

Prof. Harsh Joshi Page 1

BCA-SEM-3-WORDPRESS

Unit -1

OOP (Object Oriented Programming)

 Concept of OOP
Object oriented programming is nothing but a technique to design your application. Application could be
any type like it could be web based application, windows based application. OOP is a design concept. In
object oriented programming, everything will be around the objects and class. By using OOP you can create
modular web application. By using OOP we can perform any activity in the object model structure. There
are many benefit of using oop over the parallel or procedural programming.

 Object

Any thing is the world is an object. Look around and you can find lots of object. Your laptop, pc, car every
thing is an object. In this world every object has two thing properties and behaviors. Your car has property
(color, brand name) and behavior(it can go forward and backward). If you are able to find properties and
behaviors of real object. Then it will be very easy for you to work with Object Oriented Programming.
The object in programming is similar to real word object. Every programming object has some properties
and behaviors. For example, if you have an object for interest calculator then it has property interest rate
and capital and behavior simple interest calculation and compound interest calculation. Interest calculator
has some property and method from calculator object like addition, multiplication etc.

 Class

The class is something which defines your object. For example, your class is Car. And your Honda car is
object of car class. Like object explanation, here we will take an example of the real word and then we will
move further in programming definition.
Blueprint of the object is class. The class represents all properties and behaviors of the object. For
example, your car class will define that car should have color, the number of doors and your car which is an
object will have color green and 2 doors. Your car is an object of a class car. Or in terms of programming,
we can say your car object is an instance of the car class. So structural representation (blueprint) of your
object is class.
Now let us take an example of the programming. Your interest calculator object is an instance of class
interest calculator. Interest calculator class defines properties like capital, rate, and behavior like simple
interest calculation and compound interest calculation.
Now in your object when interest calculation behavior will be applied it will take your rate of interest and
capital and provide you the result.

 Constructor
When you create a new object, it is useful to initialize its properties e.g., for the bank account object you
can set its initial balance to a specific amount. PHP provides you with a special method to help initialize
object’s properties called constructor.

To add a constructor to a class, you simply add a special method with the name __construct(). Whenever
you create a new object, PHP searches for this method and calls it automatically.

Prof. Harsh Joshi Page 2

The following example adds a constructor to the BankAccount class that initializes account number and an
initial amount of money:

Now you can create a new bank account object with an account number and initial amount as follows:

 Destructor

PHP destructor allows you to clean up resources before PHP releases the object from the memory. For
example, you may create a file handle in the constructor and you close it in the destructor.

To add a destructor to a class, you just simply add a special method called __destruct() as follows:

There are some important notes regarding the destructor:

 Unlike a constructor, a destructor cannot accept any argument.
 Object’s destructor is called before the object is deleted. It happens when there is no reference to

the object or when the execution of the script is stopped by the exit() function.

The following simple FileUtil class demonstrates how to use the destructor to close a file handle.

 In this tutorial, we have introduced PHP constructor and destructor to help you initialize object’s
properties and clean up resources before the object is deleted.

 Inheritance

Inheritance is specific to object-oriented programming, where a new class is created from an existing class.
Inheritance (often referred to as subclasses) comes from the fact that the subclass (the newly created
class) contains the attributes and methods of the parent class.

The main advantage of inheritance is the ability to define new attributes and new methods for the subclass
which are then applied to the inherited attributes and methods.

This can be used to create a highly specialized hierarchical class structure. The biggest advantage is that
there is no need to start from scratch when wanting to specialize an existing class.

As a result, class libraries can be purchased, providing a base that can then be specialized at will (the
company selling these classes tends to protect member data using encapsulation).

inheritance has three types, single, multiple and multi-level inheritance. But, PHP
supports single inheritance and multi-level inheritance.

In PHP, inheritance can be done by using extends keyword, meaning that, we are extending the derived
class with some additional properties and methods of its parent class.

Single Inheritance:
For implementing single inheritance concept in PHP, we require two classes one as a parent and the other
as a child.

http://ccm.net/contents/encapsul.php3

Prof. Harsh Joshi Page 3

Multilevel Inheritance:

In multilevel, one-to-one ladder increases. Multiple classes are involved in inheritance, but one class
extends only one. The lowermost subclass can make use of all its super classes’ members. Multilevel
inheritance is an indirect way of implementing multiple inheritance.

Hierarchical Inheritance:
In hierarchical type of inheritance, one class is extended by many subclasses. It is one-to-many
relationship.

 Scope Resolution Operator (::)

The Scope Resolution Operator in simpler terms, the double colon, is a token that allows access to static,
constant, and overridden members or methods of a class.

When referencing these items from outside the class definition, use the name of the class.

http://php.thesunny.in/language.oop5.static.html
http://php.thesunny.in/language.oop5.constants.html

Prof. Harsh Joshi Page 4

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value cannot be a
keyword (e.g. self, parent and static).

When an extending class overrides the parents definition of a method, PHP will not call the parent's
method. It's up to the extended class on whether or not the parent's method is called. This also applies to
Constructors and Destructors, Overloading, and Magic method definitions.

 Autoloading Class Files

how to organize your class files and load them automatically using PHP __autoload() function.

It is good practice to keep each PHP class in a separated file and all class files in a folder named classes. In
addition, the name of the class should be used to name the file for example if you have a Person class, the
file name should be person.php.

Before using a class you need to load it in your script file using PHP include file function such as
require_once() as follows:

When the number of classes grows, it is quite tedious to call require_once() function everywhere you use
the classes. Fortunately, PHP provides a mechanism that allows you to load class files automatically
whenever you try to create an object from a non-existent class in the context of the current script file.

PHP will call __autoload() function automatically whenever you create an object from a non-existent class.
To load class files automatically, you need to implement the __autoload() function somewhere in your web
application as follows:

Whenever you create an object from a non-existent class, PHP looks into the ./classes folder and load the
corresponding class file using the require_once() function.

From now on, you don’t have to call require_once() function every time you use the class, which is very
useful.

Notice that if PHP cannot find the __autoload() function or if the __autoload() function failed to load the
class files, you will get an error message.

 Class constants

A constant is, just like the name implies, a variable that can never be changed. When you declare a
constant, you assign a value to it, and after that, the value will never change. Normally, simple variables
are just easier to use, but in certain cases constants are preferable, for instance to signal to other
programmers (or your self, in case you forget) that this specific value should not be changed during
runtime.

Class constants are just like regular constants, except for the fact that they are declared on a class and
therefore also accessed through this specific class. Just like with static members, you use the double-colon
operator to access a class constant. Here is a basic example:

As you can see, it's much like declaring variables, except there is no access modifier - a constant is always
publically available. As required, we immediately assign a value to the constants, which will then stay the

http://php.thesunny.in/language.oop5.decon.html
http://php.thesunny.in/language.oop5.overloading.html
http://php.thesunny.in/language.oop5.magic.html
http://www.zentut.com/php-tutorial/php-objects-and-classes/
http://www.zentut.com/php-tutorial/php-include-file/

Prof. Harsh Joshi Page 5

same all through execution of the script. To use the constant, we write the name of the class, followed by
the double-colon operator and then the name of the constant. That's really all there is to it.

Prof. Harsh Joshi Page 6

UNIT – 2

Introduction Installation & Configuration

 Content Management System (CMS)

CMS stands for Content Management System.

The definition of a CMS is an application (more likely web-based), that provides capabilities for multiple
users with different permission levels to manage (all or a section of) content, data or information of a
website project, or internet / intranet application.

Managing content refers to creating, editing, archiving, publishing, collaborating on, reporting, distributing
website content, data and information.

An example of a CMS application is a Web Application that provides the following administration, control
panel or website management functionalities:

Administration or Control Panel:

 Create, Edit, Publish, Archive web pages
 Create, Edit, Publish, Archive articles
 Create, Edit, Publish, Archive press releases

Introduction of Wordpress

WordPress is web publishing software you can use to create your own website or blog. Since it was
released in 2003, WordPress has become one of the most popular web publishing platforms. Today it
powers more than 70 million websites!

WordPress is open source software you can use to create a beautiful website or blog. It just may be the
easiest and most flexible blogging and website content management system (CMS)

WordPress enables website owners to update page content and operate a blog page through a friendly
interface.

But many people don’t realize that WordPress is much more just a blogging tool. It’s also a highly flexible
content management system (CMS) that enables you to build and manage your own full-featured website
using just your web browser. Best of all, it’s completely FREE.

That’s because WordPress is an ‘Open Source’ project. That means that hundreds of volunteers from all
around the world are constantly creating and improving the code for the WordPress software. And, there
are thousands of plugins, widgets, and themes that enable you to build just about any type of website you
can imagine.

There are several reasons WordPress is a great choice for building your blog or business website.

Prof. Harsh Joshi Page 7

1. Open Source

First of all, WordPress is Open Source. That means that there are hundreds of people all around the world
working on improving WordPress. And because WordPress is an open source project it’s also completely
FREE.

2. User-Friendly

Second, it’s user-friendly. Rather than having to hire a web designer or contact a “webmaster” every time
you want to make a small change to your website, you can easily manage and update your own content —
without having to learn HTML. In fact, if you know how to use the basic formatting tools in a program like

Microsoft Word, you can edit your site. 

3. Flexible and Extensible

Third, it’s flexible and extensible. There are thousands of plugins and themes that enable you to easily
change the entire look of your website, or even add new features like polls or contact forms, with just a

few clicks. 

4. Easy to find support

Next, if you run into problems, or you want to add custom features, it’s easy to find support or hire
someone to help you. In addition to the WordPress tutorials on this site, there are also thousands of
WordPress developers and designers who can help you. The official WordPress Forum is a great place to

get answers to your questions. 

5. SEO-friendly

WordPress is SEO-friendly. Right out of the box, WordPress includes everything you need to ensure that
your content is optimized for search engines. This is critical to your site’s visibility and online success. Matt

Cutts of Google says, “WordPress is made to do SEO well.” 

6. Control of your own content

Last, you’re in control of your own content. Other publishing platforms limit what you can and can’t do on
your own website. And, you’re locked in to that service. If it should ever shut down, your content could
simply disappear. With WordPress, you can import your data from other systems like Blogger or Tumblr.
And you can also easily export your data to move away from WordPress, should you choose. You’re in
control of your site… and your content.

 WordPress Advantages and Key Features

WordPress is the most desired website development platform today and its popularity can indeed be
evaluated with the fact that it powers over 23 percent of the websites. Well, the figure isn't constant but
increases every single day.

Although WordPress has considerably high competition in the website development market, this powerful
CMS (i.e. Content Management System) combines a group of features, viz. Simplicity and User-friendliness.

https://www.wp101.com/wordpress-tutorials/
https://wordpress.org/support/

Prof. Harsh Joshi Page 8

Its under-the-hood complexity for developers cannot be overlooked though. However, the following list of
standard features and advantages, powers WordPress stand out in the competition:

 Quick Installation and Upgrade

WordPress has simple and quick processes of installation and upgrade. Simply create your web pages
online and upload the database. In case of using the FTP program, simply create a database and upload
WordPress, and subsequently install it to continue.

 User Management

A website has several different roles associated with it. For instance, the administrator to manage the web
pages, writers and editors to manage content, users or subscribers to create and manage their profiles.
WordPress makes the management quick and easy.

 Simplicity of Operations

The simplicity and ease of operations make the process efficient and the productivity level enhances as a
result. With WordPress, you can anytime create a new web page and publish content with quickness,
thereby following the standard Internet culture.

 Inbuilt Themes

WordPress has multiple inbuilt themes and allows you create more as per your personal or business
requirements. WordPress API powers you create themes that can be very simple as well as complex in
design.

 Inbuilt Comments

You write and publish a blog of your WordPress website. Your friends and followers can put their
comments, as WordPress' built-in comments feature provides them with a space or forum for discussion.
You can manage or moderate those comments.

 Extensions & Plug-ins

WordPress is a feature-rich website development platform that meets your different needs. A plug-in
directory full of plug-ins extend its features. Use these plug-ins enhance the features and functionality of
your website.

 Flexibility

WordPress is an Open-source platform for website development and you can proceed with any type of
theme, i.e. a personal blog to a full-fledged professional website. Choose any of the existing designs or
create a new one.

 Media Management

You can add images, videos, and other media items to your WordPress website and enhance the richness
of content. Simply drag the media content from your computer and drop it into the uploader to get it

Prof. Harsh Joshi Page 9

uploaded. Use the image editing tools if required.

Not only is WordPress available free of cost, but also the open source to be used in any manner.

Advantages & Disadvantages of Wordpress

 Advantages:

1. Easy to Use
While most products advertise themselves as being “easy to use” WordPress doesn’t advertise this,
this is the reputation it has earned. Unlike Drupal and Joomla, WordPress doesn’t require
knowledge of PHP or HTML coding. WordPress comes with rich preinstalled features that are
literally point and click, installing plugins is simple, and their templates make designing easy.

2. Menus
WP 3.0 has some great menu options, making it prettier and simpler than Joomla due to its custom
menus that can be rearranged to include categories, pages, etc.

3. Community
Having a large community to draw on for support and tricks is important to many people and WP
has one of the largest online communities around.

4. Themes
There are thousands of free themes available online to use to help you choose a design for your
site. There are also premium themes available for purchase for those who want an added touch of
professionalism to their site.

5. Plugins
There are almost 13,000 plugins available for the WP platform. It is through these plugins that WP
gained its CMS title as plugins opened up WP to a world of possibilities. Most of these plugins are
free which is cool.

6. Custom Fields
Through the use of custom fields you can turn WP into a CMS by going beyond the typical blogging
activities like posting, categorizing and tagging. They have made this process easy for beginners as
well with the addition of custom field plugins like ‘Custom Fields Template,’ ‘Flutter’, and ‘More
Fields’.

7. Pods CMS
This plugin allows you to create and manage different content types without using custom fields.

 Disadvantages:

1. WP Scripting
For advanced users who are familiar with more advanced techniques like scripting, WP uses its own
script. And knowledge of the WP script is necessary for things like adding or removing post dates.

2. Design Knowledge Required
While WP does have plenty of nice-looking templates many people want to design a unique website
as WP themes often look too similar to one another. To make unique designs in WP you need
knowledge of the CSS style sheet language, and odds are that if you have this sort of designing
knowledge you will want a more powerful toolset like those available in Drupal-like CMSs.

3. Too Many Plugins
WP needs a lot of plugins to be able to do the things that Joomla and Drupal can do out of the box.
While the plugins are available they can slow your page down if you install too many of them. The
double-edged sword on WP plugins is that by the time your page has been slowed because of the

Prof. Harsh Joshi Page 10

plugins you have already put a significant amount of man-hours into the project and would be
reluctant to migrate to another CMS. Plan for this ahead of time by looking at how many plugins
you would need to create the functionality you want.

4. PHP Security
Unfortunately the PHP security for WP has a shoddy track record and security isn’t as strong as
some of the other platforms. This will only be a factor depending on how sensitive the content of
your site is.

5. Documentation
While there is a large online community of users to help and support you there is little to no offline
documentation. WP has been criticized for not creating a MS SDK document, especially now that it
calls itself a CMS.

6. Tables and Graphics
Modifying and formatting tables and graphic images is more difficult in WP than in its competitors.

7. Needs Regular Updates
WP is constantly changing and growing and it needs regular updates. This is not a big deal unless
you are looking for a set-it-and-forget-it solution, in which case this might not be the solution for
you as it needs periodic updates.

8. Queries
Queries can be a difficult and convoluted process because of all the custom fields you need to use
to go take WP beyond typical blogging actions. Often you need a Custom Select Query, which can
be a royal pain in the butt.

 Installation of wordpress

Step -1 : Download the WordPress installation package

To start the installation process, first you need to download WordPress from it's official download page.
We recommend that you always download and install the latest stable version of WordPress.

Once you click on the Download button for the latest WordPress version, the installation package will be
saved to your hard disk. Locate the installation package that you've just downloaded and extract it to a
new folder.

http://wordpress.org/download/

Prof. Harsh Joshi Page 11

Step 2 : Upload the WordPress Files to Your Server

Now, you need to upload the extracted files and folders to your web server. The easiest way to upload the
installation files is via FTP.

If you want your WordPress to be the main installation on your account and to be accessible through your
main domain (i.e. www.mydomain.com), you need to upload the extracted files to your public_html folder.

Once the download is complete, extract the archive and upload it to your web hosting account. You can do
that via FTP using a client application like Filezilla or via cPanel -> File Manager -> Upload file(s). If you want
this WordPress installation to be main for your website, the files should reside in the public_html folder of
your account.

However, you can always make a subfolder (i.e. public_html/blog) if you want to run only part of your
website on WordPress.

Step 3 : Create a MySQL Database for WordPress to use

Now, you need to create a MySQL database and assign a user to it with full permissions. Once you create
your MySQL Database and User, make sure you write down the database name, database username and
password you've just created. You will need those for the installation process.

https://www.siteground.com/tutorials/ftp/
https://www.siteground.com/tutorials/ftp/filezilla.htm
https://www.siteground.com/tutorials/cpanel/file_manager.htm

Prof. Harsh Joshi Page 12

Step 4: Go through the installation process

Now it's time to navigate to your website to start with the installation process. If you have uploaded
WordPress in your public_html directory you'll need to go to http://yourdomain.com in your preferred
browser. The first thing you will notice is a message, telling you that you don't have a wp-config.php file
and you should create one. Just click on the Create a Configuration File button to proceed.

On this page you will see a message, asking you to prepare the necessary information for the installation.
Since we already have this information, simply press the Go! button.

Enter the details for your newly created MySQL database and press the Submit button

Prof. Harsh Joshi Page 13

WordPress will now check if your settings are correct. If you have entered all the necessary information,
you will see a confirmation screen. Press the Run the Install button to proceed.

On the next screen you will have to enter the information about your administrative username and the
title of your new site. In addition, you can specify whether you'd want search engines to index your site or
not. Once you fill in that information, press the Install WordPress button. Bear in mind, however, that you
should specify a real email address. It can be later used in case you forget your password.

Your new WordPress application is installed. You can use the Login In button to access your administrative
backend and start posting in your new site.

Wordpress Directory & file structure

The directory structure is the organization of files into a hierarchy of folders. It describes how files are
arranged for an application. A hierarchy is similar to a tree structure.

The WordPress Directory Structure

The core WordPress files and directories are listed below.

wp-admin

wp-content

wp-includes

index.php

license.txt

Prof. Harsh Joshi Page 14

readme.html

wp-activate.php

wp-blog-header.php

wp-comments-post.php

wp-config-sample.php

wp-cron.php

wp-links-opml.php

wp-load.php

wp-login.php

wp-mail.php

wp-settings.php

wp-signup.php

wp-trackback.php

xmlrpc.php

.htaccess

wp-config.php

These are the core WordPress directories and files. Now, let’s see some of the important files and folders
in detail. Keep in mind that the first three are folders and rest are files.

 wp-admin

The admin tools are powered by this folder. As it’s name indicates, this deals with the administrator. The
main file inside this directory is the admin.php. It enables the connection to the database, displays the
WordPress dashboard, and performs any other number of key functions, such as checking if any given user
is in fact the admin in question.

 wp-content

The next folder we are going to see is the wp-content. The Themes and Plugins are familiar to every
WordPress user. These are stored inside this directory.

Prof. Harsh Joshi Page 15

 Plugin

The plugins are used to add more functionality to the WordPress site. Plugins can offer custom setup to the
WordPress installation while the default WordPress installation is designed to be light weight.

 Themes

The WordPress themes provide the graphical interface to the website. There are many files that work
together to achieve this.

The themes and plugins are the major parts in the wp-content directory.

 wp-includes

The wp-includes is the final top-level folder and is large in size. As we have seen earlier, the wp-admin
includes all the files necessary to power said admin functions, wp-content stores all your themes and
plugins, and wp-includes is what enables the site to run.

This folder is where most of the WordPress core files are stored. A fresh WordPress install will include over
140 different files in the main directory, and fourteen different folders including certificates, fonts, js,
theme-compact, and widgets.

These subfolders aren’t important as the files included in the main folder, such as functions.php. This file is
part of WordPress’ core, and it comes with a lot of the functions that enable the WordPress installation to
work. As an example, some lines of code will be seen when you open the file on a text editor, and they’re
just a regular function meant to transform dates into different formats.

 index.php

The index file loads and initializes all your WordPress files when a page is requested by a user.

 license.txt

This is WordPress license file. The WordPress is a free software and is licensed under the GNU General
Public License as published by the Free Software Foundation.

 readme.html

This core file contains the instructions to the user as its name indicates.

 wp-activate.php

This contains the following:

 do_activate_header()

Function: Adds an action hook specific to this page that fires on wp_head.

Prof. Harsh Joshi Page 16

 activate_wp_head

Fires before the Site Activation page is loaded, but on the wp_head action.

 wpmu_activate_stylesheet()

Function: Loads styles specific to this page.

 activate_header

Action Hook: Fires before the Site Activation page is loaded.

 wp-blog-header.php

This folder contains the http headers.

 xmlrpc.php

WordPress uses an XML-RPC interface. WordPress has its own implementation for WordPress-specific
functionality in an API called the WordPress API. This should be used when possible, and your client should
use the API variants beginning with the wp prefix.

XML-RPC functionality is turned on by default since WordPress 3.5.

In previous versions of WordPress, XML-RPC was user enabled. To enable, go to Settings > Writing >
Remote Publishing and check the box.

 wp-config.php

It is one of the core WordPress files which contains information about the database, including the name,
host (typically localhost), username, and password.

There are many other folders and files, but these are the most important folders and files in the WordPress
directory structure.

 Dashboard overview

The WordPress dashboard area gives you a general overview of your website. It also displays many useful
quick links for performing common tasks such as writing a quick draft or replying to the latest comment.

Prof. Harsh Joshi Page 17

The dashboard area is built up of many different widgets. Each widget can be enabled or disabled.

To do this, click on the “Screen Options” drop down menu at the top of the page. This will show you a list
of default widgets and widgets that have been added by plugins. Simply uncheck the widgets that you want
to remove and they will automatically be hidden.

Many beginners do not alter the default dashboard that WordPress initially offers. However, WordPress
allows you to minimize widgets. It also allows you to drag widgets to a new location. This lets you place the
widgets you use more frequently in a more prominent position.

Prof. Harsh Joshi Page 18

Let us take a closer look at the default widgets that populate the WordPress dashboard.

Welcome to WordPress!

The welcome widget is displayed at the top of the dashboard. On the left hand side is a large “Customize”
button that takes you to the WordPress theme customizer and a link underneath to the main themes area.

The center column contains useful links to create a blog post, create a page, and view the front end of your
website.

The last column contains links to the widgets page, menu page and comment settings. A link to the “First
Steps With WordPress” page in the WordPress codex is also displayed.

Unlike other widgets, there is no option to minimize the “Welcome to WordPress” box. Instead, there is an
option to remove it. I assume that this is because the widget is aimed at beginners.

You may have dismissed the widget already and removed it from your dashobard, however if you find its
quick links useful, you can re-enable the “Welcome to WordPress” box via the screen options drop down
menu.

At a Glance

The “At a Glance” widget gives you a general overview of your website including the number of published
posts and published pages. The figure for the total number of comments include spam comments.

The theme you are currently using is also noted and a reminder is printed if you have blocked search
engines from indexing your website.

Prof. Harsh Joshi Page 19

Some plugins add additional information to this widget. For example, if Akismet is activated, it displays
how many spam comments it has protected you from and how many spam comments are queued.

 Quick Draft

The “Quick Draft” widget is handy for jotting down an idea for a future blog post. There is no visual editor
available, therefore you cannot make text bold or upload an image.

The concept of quick draft is simple. If you have an idea for a post, write down a title and some notes
about your idea and then save it as a draft. You can then complete the post at a later date.

 Activity

The “Activity” widget displays your last few published posts. It also displays the latest comments that have
been submitted. You can respond to the comment directly through the widget. You can also trash the
comment or move it to spam.

https://wordpress.org/plugins/akismet/

Prof. Harsh Joshi Page 20

 WordPress News

The “WordPress News” widget displays the latest blog posts from official WordPress blogs such as WP
Tavern and the WordPress.org blog.

In the past, I would check this widget to see if there was any WordPress update. Since WordPress now
advises you whenever a new update is live, I tend to hide this widget.

http://wptavern.com/
http://wptavern.com/
http://wptavern.com/
http://wordpress.org/news/

Prof. Harsh Joshi Page 21

 Custom Dashboard Widgets

The WordPress dashboard is not restricted to the five widgets that come packaged with WordPress. Many
plugins add a widget to your dashboard after activating it.

For example, if you have the WordPress.com Stats module from Jetpack activated, you can see a summary
of your traffic stats directly from your dashboard.

Other plugins, such as Dashboard Notes or Advanced Drafts & Reviews Dashboard Widget, are specifically
designed to enhance your WordPress dashboard. This allows you to truly customize your dashboard with
the information you need. For example, on my personal blog I have installed Google Analytics Dashboard
for WP so that I can have a quick glance at my recent traffic stats every time I log in.

You can also add your own custom widgets to your dashboard by adding functions to a plugin or to your
theme’s functions.php template. This does, however, require a little technical knowledge to execute.

https://wordpress.org/plugins/jetpack/
http://wordpress.org/plugins/dashboard-notes/
http://wordpress.org/plugins/advanced-drafts-and-reviews-dashboard-widget/
http://wordpress.org/plugins/google-analytics-dashboard-for-wp/
http://wordpress.org/plugins/google-analytics-dashboard-for-wp/
http://wordpress.org/plugins/google-analytics-dashboard-for-wp/
http://codex.wordpress.org/Dashboard_Widgets_API

Prof. Harsh Joshi Page 22

If you have a lot of plugins installed on your website, your dashboard may start getting a little
overcrowded. Do not be alarmed if this occurs as you can disable any unwanted widgets through the
screen options menu. Alternatively, you could use a plugin such as Nova Dashboard Cleanup to remove
unwanted widgets.

The default widgets, such as activity and quick draft, are automatically displayed on the dashboard of other
users such as contributors and authors. Plugins that add widgets to your dashboard may also show them to
unauthorized users. This can be a big problem as users may see sensitive information that they were not
supposed to (e.g. traffic, important notes etc).

To control what widgets other user groups can see, I recommend using a plugin such as Dashboard
Commander. It allows you to restrict access of widgets to users who have a certain permission level.

For many people, the WordPress dashboard is simply the page they see before they click on the admin
menu and go to a specific page. For others, the dashboard has become a nuisance as it has been filled with
useless widgets from plugin developers.

Yet, if you take control of your dashboard, it can be a fantastic tool. It can be a place to save ideas, reply to
comments, and view your current traffic statistics. WordPress gives you the tools to control your
dashboard; however it is your job to use them.

 Adding a New Web Page

To add a new web page:

1. Click on the Pages menu in the sidebar and select “Add New.“
2. Enter your page title in the top box
3. Add the page content into the WordPress Editor.
4. In the right sidebar, you will see a box labelled “Page Attributes.” Here you can specify a parent

page and a template.

http://wordpress.org/plugins/nova-dashboard-cleanup/
https://wordpress.org/plugins/dashboard-commander/
https://wordpress.org/plugins/dashboard-commander/
https://wordpress.org/plugins/dashboard-commander/

Prof. Harsh Joshi Page 23

• Parent Page: If your new page belongs on a sub-menu beneath another page, you should specify that
page as it’s Parent.

• Template: You may also choose a template if your theme has multiple templates; however, most pages
will use the default template.

5. Make sure you click the Publish button to save your changes and make them live. If you are not ready to
go live, you can also choose to save your page as a draft.

Important Note: Some themes are set up to automatically add your page to the menu and others require
that an Administrative user manually add the page to the menu.

 Updating a Web Page

The process for updating an existing web page is basically the same as adding a new page.

Click on the Pages menu to bring up a list of your pages.

When you hover over the page that you want to edit, a menu will appear below that page as shown in the
screen-shot below. Click on the Edit link to edit your web page.

Prof. Harsh Joshi Page 24

When the web page opens, you can edit your title(1) and your page content(2) as desired. Make sure you
click the Update button (3) to save your changes and make them live.

 Adding a Post

One of the great things about WordPress is that its interface is very consistent. So if you already know how
to add/edit web pages, then this tutorial will seem like a review. There are however a few “extra” things
that you need to do when adding a blog post.

To add a new blog article, click on the Posts menu in the sidebar and select “Add New.”

1. Enter your post title in the top box
2. Add the content into the WordPress Editor
3. In the sidebar, you need to choose a category for the article to appear in.

Prof. Harsh Joshi Page 25

4. You should also specify tags for your article (Make sure you check out the tutorial on Organizing
your Blog with Categories & Tags)

5. If your theme uses Excerpts, you can specify a shortened version of the article in the Excerpts box.
6. Make sure you press the Publish button to save your changes and make them live!

 Updating a Blog Post

The process for updating a blog post is basically the same as adding a new post.

Click on the Post menu to bring up a list of your articles.

When you hover over the article that you want to edit, a menu will appear below that page as shown in the
screen-shot below. Click on the Edit link to edit your post.

When the post opens, you can edit your title(1) and your page content(2) as desired.

You can also change the categories and tags in side bar if necessary.

Make sure you click the Update button (3) to save your changes and make them live.

Prof. Harsh Joshi Page 26

 Deleting a Page or Post

To delete a web page or blog post, click on the appropriate menu (Pages or Posts) and hover over the one
you wish to delete..

On the hover menu, you will see a Trash option. Click this to move the page to the trash.

Note that the file is just moved to the trash and is not actually deleted. You can go into the trash folder to
restore a page if you accidentally delete a page.

Prof. Harsh Joshi Page 27

To get to the trash folder go to either the Pages section or the Posts, depending upon what you want to
delete. At the top of the page, there is a horizontal menu (1) that allows you to filter the page to view: All
Pages, Published Pages, Draft Pages or Trash. Click on the Trash link.

To RESTORE(2): Hover over the page you want to restore and click on the Restore link. This will restore
the page to it’s former state – either Published or Draft.

To PERMANENTLY DELETE(2): Hover over the page you want to delete and click on the Delete Permanently
link.

You can also check the box prior to multiple pages and use the “Bulk Action” drop-down box to Restore or
Permanently Delete multiple pages at once.

In addition, you can ”Empty the Trash(3)” to delete all of the pages in the trash at once.

 How to Add Media (pdfs, jpgs, etc.) to Posts and Pages

In order to add or update content and/or media on a WordPress website, you must have Administrator,
Editor, Author or Contributor privileges.

 How to upload .jpg, .gif, .png and .pdf files:

(It is not recommended to upload and /or link to .doc files)

1. Log into your WordPress website
2. Click on Media (left navigation) > Add New

You will see a ‘Multi-file uploader’ – you can do the same tasks with the ‘Browser uploader’ as well,
however these instructions are for using the ‘Multi-file uploader’. File types you can upload: .jpg,
.gif, .png and .pdf.

3. Either:
drag and drop the media files you wish to use on your website to the space inside the dotted
lines;OR
click on ‘Select Files’, find the file you wish to upload, and click to upload.
Information about the file will then appear.

4. (Optional) You can now edit the image by clicking the ‘Edit Image’ button
5. Fill in the Alternate Text field

This is the text that would appear if a visitor’s images are turned off or if a visitor was using a text or
screen reader. It should describe the image in a succinct manner.

6. Take note of the File URL
This is the URL you use to link to the image or file.

7. Click ‘Save all changes’ to keep your file in the system
You will be directed to the Library page that lists all uploaded media for your website.

 How to delete a media file:
If you no longer wish to have a media file in your system:

1. Click on Media > Library
2. Hover over the name of the file you wish to delete

Three options will appear: ‘Edit’, ‘Delete Permanently’ and ‘View’.

Prof. Harsh Joshi Page 28

3. Click on ‘Delete Permanently’
A pop-up window will appear.

4. Click on ‘Ok’
Your file will now be permanently deleted and no longer available or in an archive.

Keep in mind that when a file is deleted, there is no back-up and it is not retrievable. It is very important to
be sure that when a file is deleted, it is done intentionally and with care.

 How to find a media file’s URL:

1. Click on Media > Library
2. Hover over the name of the file you wish to delete

Three options will appear: ‘Edit’, ‘Delete Permanently’ and ‘View’.
3. Click on ‘Edit’

A page will all associated data will appear.
4. At the bottom of the page is ‘File URL’ and a URL.

This is your file’s URL.
5. Click on ‘Update Media’ to return to the Library page

Alternatively, you can simply navigate away from this page. If you have made any changes to the
information, you will loose those changes if you do not click ‘Update Media’ to save them.

 How to link to media:

If you wish to link to a media file (eg. a PDF or ZIP file) from a page or post:

1. Open up the Page or Post you wish to add the media file to
2. Highlight the text you’d like to use as a hyperlink
3. Click on the chain icon in the area above the text field you’re using – it usually appears in the

middle of the top row and if you rest your mouse on it, the words ‘Insert / Edit Link (Alt + Shift + A)’
will appear with a yellow background. A pop-up box will appear

4. Enter the URL of your file (see above ‘How to find a media file’s URL’)
5. Optional: Click ‘Open link in a new window/tab’

Only links to PDF files should open up in separate window; images, videos and webpages should
not.

6. Click on ‘Add Link’
You will be returned to your original Page or Post, and the text you made into a hyperlink will now
be underlined and a different colour than your regular text.

Note:

 A hyperlink’s text should be descriptive of the link destination. Whenever possible it should be the
title of the page or media file being linked to and never read as ‘click here’.

 If you are linking to a PDF, ZIP file, etc., warn your visitors by including the file type in brackets
before the end of the hyperlink.

 How to insert an image onto your page:

1. Open up the Page or Post you wish to insert the image file into

Prof. Harsh Joshi Page 29

2. Click on ‘Upload / Insert’
This is found below the title of your page and above the field where you add your content – there
are usually icons on the right side. A new window will appear.

3. If your image has not yet been uploaded, stay on the default ‘From Computer’ tab and proceed as
directed in the "How to upload .jpg, .gif, .png and .pdf files" above; If your image is already
uploaded to the website, click on the ‘Media Library’ tab at the top of the window and continue as
described belowWhen the ‘Media Library’ tab is opened, a list of all available images will be shown.

4. Find the image you wish to use, and click on ‘Show’ (on the right)
The section will expand to show all details associated with the image.

5. If Alternate Text has not yet been written, fill in that field
6. Click on where on the page the image should be aligned

Right alignment is recommended.
7. Select the appropriate size for your image

If the image was sized before uploading, click on ‘Full Size’
8. Click on ‘Insert into Post’

The window will close and you will be returned to your page or post.

User Roles and Capabilities

User roles

Roles are essentially user groups, WordPress comes with six out of the box. These go from the most basic
of subscriber all the way up to the most powerful one of Super Admin. Let’s learn a bit more about them.

 Subscriber: the most basic role a user can have. A subscriber can only read published posts and
pages and modify their own profile.

 Contributor: a contributor can create new posts and modify their content, but can’t publish them.
 Author: an author can create, modify and publish their own posts.
 Editor: the editor can do anything an author can do and additionally has the capability of modifying,

publishing and deleting other users’ posts.
 Administrator: along with all the above permissions and administrator can handle administrative

tasks, such as installing plugins and themes, modifying site settings and more.
 Super Admin: the final user role can only be found on multisite installations and grants the user the

ability to create and delete sites, install and activate themes and plugins network wide and more.

Capabilities

Capabilities are essentially permissions, each one grants the user a certain ability. For example
publish_posts allows a user to publish a post they have created, this capability is available to users with the
role of author and upwards. As you might imagine the more capabilities a user has, the more powerful they
become. A subscriber has a single capability, that of read which means that the only thing they can visit in
the WordPress dashboard is their own profile page under Users > Your Profile. At the moment of writing
there are about 60 default capabilities which can be found here.

The default roles and their assigned capabilities will cover the needs of most websites out there. However
in some cases they might not be perfect. For example, while contributors can create posts they can’t
upload files of any kind, so they can’t add featured or inline images. Another thing that may cause trouble
to multi author site owners is that the author role allows users to delete posts that have been already

https://codex.wordpress.org/Roles_and_Capabilities#Capabilities

Prof. Harsh Joshi Page 30

published, which is problematic because an author can create the post, get paid for it and then delete it
after it’s published.

By default WordPress does not allow administrators to modify capabilities for user groups, making it hard
to fine tune permissions to match their needs. This can be amended by writing some code to add or
remove permissions from specific groups, or luckily, by using one of the many role manager plugins
available in the plugin directory. Some of the most popular are User Role Editor, Members, Advanced
Access Manager, WPFront User Role Editor, Capability Manager Enhanced and User Roles & Capabilities.
Basic functionality on all plugins is the same, they will all allow you to modify the capabilities of existing
user roles, create new user roles only with the capabilities you need and even create and assign new
capabilities.

Settings (General, writing, Reading, Discussion, Media, Permalinks)

General Setting

WordPress general setting is used to set the basic configuration settings for your site. In the setting
administration screen, it is a default setting screen.

Following are the steps to access the general settings −

Step 1 − Click on Settings → General option in WordPress.

https://wordpress.org/plugins/user-role-editor/
https://wordpress.org/plugins/members/
https://wordpress.org/plugins/advanced-access-manager/
https://wordpress.org/plugins/advanced-access-manager/
https://wordpress.org/plugins/advanced-access-manager/
https://wordpress.org/plugins/user-roles-and-capabilities/

Prof. Harsh Joshi Page 31

Step 2 − The General Setting page is displayed as shown in the following snapshot.

Following are the details of the fields on general settings page.

 Site Title − It displays the name of the site in the template header.
 Tagline − Displays a short sentence about your site.
 WordPress Address (URL) − It is the URL of WordPress directory where your all core application files

are present.
 Site Address(URL) − Enter the site URL which you want your site to display on the browser.
 E-mail Address − Enter your e-mail address which helps to recover your password or any update.
 Membership − Anyone can register an account on your site after you check this checkbox.
 New User Default Role − The default role is set for the newly registered user or members.
 Timezone − Sets the time zone based on the particular city.
 Date Format − Sets the date format as you need to display on the site.
 Time Format − Sets the time format as you need to display on the site.

Prof. Harsh Joshi Page 32

 Week Starts On − Select the week day which you prefer to start for WordPress calendar. By default
it is set as Monday.

 Site Language − Sets the language for the WordPress dashboard.

Step3 − After filling all the information about general settings, click on Save Changes button. It saves all
your general setting information.

 Writing Setting

The writing settings controls the writing experience and provides options for customizing WordPress site.
These settings control the features in the adding and editing posts, Pages, and Post Types, as well as the
optional functions like Remote Publishing, Post via e-mail, and Update Services.

Following are the steps to access the writing settings −

Step (1) − To change writing settings, go to Settings → Writing option.

Prof. Harsh Joshi Page 33

Step (2) − The Writing Setting page is displayed as shown in the following screen.

Following are the details of the fields on the page.

 Formatting − This field defines two sub options for better user experience.
o The first option Convert emoticons like :-) and :-P to graphics on display will turn text-based

emoticons into graphic-based emoticons.
o The second option WordPress should correct invalidly nested XHTML automatically corrects

the invalid XHTML placed within the posts or pages.
 Default Post Category − It is a category to be applied to a post and you can leave it as

Uncategorized.
 Default Post Format − It is used by themes to select post format to be applied to a post or create

different styles for different types of posts.
 Post via e-mail − This option uses e-mail address to create posts and publishes posts on your blog

through e-mail. To use this, you'll need to set up a secret e-mail account with a POP3 access, and
any mail received at this address will be posted.

 Mail Server − It allows reading the e-mails that you send to WordPress and stores them for
retrieval. For this, you need to have POP3 compatible mail server and it will have URI address such
as mail.example.com, which you should enter here.

 Login Name − To create posts, WordPress will need its own e-mail account. The Login Name will use
this e-mail address and should be kept as a secret as spammers will post links redirecting to their
own websites.

 Password − Set password for the above e-mail address.
 Default Mail Category − It allows selecting custom category for all the posts that are published via

Post by e-mail feature.

Prof. Harsh Joshi Page 34

 Update Services − When you publish a new post, WordPress will automatically notify the site
update services in the box. See the Update Services on the codex for the long list of possible
services.

Step (3) − After filling all the above information, click on Save Changes button to save your information.

 Reading Setting

Reading Setting is used to set the content related to the front page. You can set the number of post to be
displayed on the main page.

Following are the steps to access the reading settings −

Step (1) − Click on Settings → Reading option in WordPress.

Prof. Harsh Joshi Page 35

Step(2) − The Reading Settings page is displayed as shown in the following screen.

Following are the details of the fields on reading settings.

 Front page displays − This section is used to display the front page in any of the following format −
o Your latest posts − It displays latest posts on the front page.
o A static page − It displays the static pages on the front page.
o Front Page − You can select the actual page you want to display on front page from the drop

down.
o Posts Page − You can select the page from the drop down which contains posts.

 Blog pages show at most − The number of posts to be displayed per page or site. By default, it is set
as 10.

 Syndication feeds show the most recent − The user can view the number of posts when they
download one of the site feeds. By default, it is set as 10.

 For each article in a feed, show − This section is used to display the post by selecting any of the
following formats −

o Full Text − It displays the complete post. It is set as default.
o Summary − It displays the summary of the post.

 Search Engine Visibility − After clicking on the checkbox, Discourage search engines from indexing
this site, your site will be ignored by the search engine.

Step(3) − After filling all the information, click on Save Changes button to save your Reading Setting
information.

 Discussion Setting

WordPress discussion setting can be defined as the interaction between the blogger and the visitors. These
settings are done by the admin to have a control over the posts/pages that come in through users.

Following are the steps to access the Discussion setting –

Prof. Harsh Joshi Page 36

Step (1) − Click on Settings → Discussion option in WordPress.

Step (2) − The Discussion Settings page is displayed as shown in the following snapshot.

Prof. Harsh Joshi Page 37

Following fields are seen in Discussion settings.

 Default article settings − These settings are default to the new pages you create or new posts. This
contains three more settings. They are −

o Attempt to notify any blogs linked to from the article − When you publish articles then it
sends a notification (sends pings and trackback) to other blogs.

o Allow link notifications from other blogs (pingbacks and trackbacks) − Accepts pings from
other blogs.

o Allow people to post comments on new articles − You can allow or disallow other people to
comment on your article using this setting.

You can change the settings as per your will for individual articles.

 Other Comment Settings − This setting has the following options −
o Comment author must fill out name and e-mail − When you check this box, it is mandatory

for visitors to fill their name and email address.
o Users must be registered and logged in to comment − If you check this box, only those

registered visitors can leave comments, if not checked anyone can leave any number of
comments.

o Automatically close comments on articles older than days − This option allows you to accept
comments only for a particular time period as per your wish.

o Enable threaded (nested) comments − When you check this option, visitors can reply or
have a discussion and get responses.

o Break comments into pages with top level comments per page and the page displayed by
default − If your pages are getting a lot of comments then you can split them into different
pages by checking this box.

o Comments should be displayed with the comments at the top of each page − You can
arrange the comments in the form of ascending or descending order.

 Email me whenever − This setting contains two options, namely −
o Anyone posts a comment − When you check into this box, the author gets an e-mail for

every single comment that is posted.
o A comment is held for moderation − This is used in case you do not want your comment to

be updated before it's moderated by the admin.
 Before a comment appears − This setting allows how your posts are controlled. There are two more

settings as followed −
o Comment must be manually approved − If you check this box then only the approved

comments by the admin can be displayed on the posts or pages.
o Comment author must have a previously approved comment − This can be checked when

you want to approve a comment of an author whose has commented and his e-mail address
matches the e-mail address of the previous posted comment. Otherwise the comment is
held for moderation.

 Comment Moderation − Contain only a specific number of links that are allowed into a comment.
 Comment Blacklist − You can input your own spam words which you do not want your visitors to

enter into the comments, URL, e-mail etc.; later it would filter the comments.
 Avatars − Avatar is a small image that displays at the top-right-hand corner of the dashboard screen

beside your name. It is like your profile picture. Here you have a few more options where you can
set your avatar for WordPress site.

o Avatar Display − It displays your avatar besides your name when it is checked.

Prof. Harsh Joshi Page 38

o Maximum rating − You have a four other options of avatars you can use. They are G, PG, R
and X. This is the age section where you select according to which type of audience you
want to display your posts.

o Default Avatar − In this option, there are few more types of avatars with images; you can
keep these avatars according to your visitors e-mail address.

Step (3) − Click on Save Changes button to save the changes.

 Media Setting

It is used to set the height and width of the images which you're going to use on your website.

Step (1) − Click on Settings → Media option in WordPress.

Step (2) − The Media Settings page is displayed as seen in the following screenshot.

Prof. Harsh Joshi Page 39

Following are the details of the fields on Media settings −

 Thumbnail size − Set the size of the thumbnail.
 Medium size − Set the height and width of medium size images.
 Large size − Set width and height of larger images.
 Uploading files − After checking this checkbox, the uploaded image will be arranged into year and

month based folder.

Step (3) − After setting the dimension in pixels, click on Save Changes button. It saves your media setting
information.

 Permalinks Setting

Permalink is a permanent link to a particular blog post or category. It allows setting the default permalink
structure. These settings are used to add permalinks to your posts in WordPress. Following are the steps to
access permalink settings.

Step (1) − Click on Settings → Permalinks option from the left navigation menu.

Prof. Harsh Joshi Page 40

Step (2) − When you click on Permalinks, the following page appears on the screen.

Here are a few settings you can make −

 Common settings −

Check any of the radio buttons to choose your permalink structure for your blogs

o Default − It sets the default URL structure in Wordpress.
o Day and name − It sets URL structure according to the date and name in your posts.
o Month and name − It sets the URL structure according to the month and name in your post.
o Numeric − It sets numbers in the URL structure in your post.
o Post name − It sets post name in the URL structure in your post.
o Custom Structure − It sets the URL structure of your choice by writing the desired name in

the given text box.
 Optional

These are optional. You can add custom structure for main category or tag URL. If your text box is empty
then default settings is used. Here you have two options.

o Category Base − Add custom prefix for your category URL.

Prof. Harsh Joshi Page 41

o Tag Base − Add custom prefix to your Tags URL.

Step (3) − Once you are done with changes, click on Save Changes button to save the permalink settings.

Upgrading WordPress Core Manually

1. First create a full backup of your website. This is very important in case you make a mistake.
2. Download the newest WordPress ZIP file from wordpress.org.
3. Unzip the file into a directory on your local machine or in a separate directory on your website.
4. Deactivate all of the plugins on your WordPress site.
5. Go to your website root directory and delete your ‘wp-includes’ and ‘wp-admin’ directories. You

can do this via sFTP or via SSH.
6. Upload (or copy over) the new wp-includes and wp-admin directories from the new version of

WordPress you unzipped to your website root directory to replace the directories you just deleted.
7. Don’t delete your wp-content directory or any of the files in that directory. Copy over the files from

the wp-content directory in the new version of WordPress to your existing wp-content directory.
You will overwrite any existing files with the same name. All of your other files in wp-content will
remain in place.

8. Copy all files from the root (‘/’) directory of the new version of WordPress that you unzipped into
your website root directory (or the root directory of your WordPress installation). You will
overwrite any existing files and new files will also be copied across. Your wp-config.php file will not
be affected because WordPress is never distributed with a wp-config.php file.

9. Examine the wp-config-sample.php which is distributed with WordPress to see if any new settings
have been added that you may want to use or modify.

10. If you are upgrading manually after a failed auto-update, remove the .maintenance file from your
WordPress root directory. This will remove the ‘failed update’ message from your site.

11. Visit your main WordPress admin page at /wp-admin/ where you may be asked to sign-in again.
You may also have to upgrade your database and will be prompted if this is needed. If you can’t
sign-in, try clearing your cookies.

12. Re-enable your plugins which you disabled earlier.
13. Clear your browser cache to ensure you can see all changes. If you are using a front-end cache like

‘varnish’ you should also clear that to ensure that your customers can see the newest changes on
your site.

14. Your upgrade is now complete and you should be running the newest version of WordPress.

Upgrading WordPress Plugins Manually

1. First back-up your WordPress site if you haven’t already.
2. Download a ZIP file of the plugin you need to upgrade. You can usually find most plugins on the

plugin repository along with a link to download the newest ZIP file.
3. Unzip the plugin onto your local machine. It will create a directory called ‘plugin-name’ with all the

files under it.
4. Use sFTP to delete the existing plugin directory from the wp-content/plugins/ directory on your

site.
5. Replace the deleted directory by uploading the unzipped plugin to the wp-content/plugins/

directory leaving it in a directory that looks like (for example) wp-content/plugins/plugin-name
6. Sign in to your WordPress site. Go to the ‘Plugins’ menu and verify that the plugin you upgraded is

the newest version.

https://wordpress.org/plugins/

Prof. Harsh Joshi Page 42

Upgrading WordPress Themes Manually

Note, if you are running a customized theme you will lose any customizations if you simply overwrite your
theme with a new one. In this case you will need to work with a developer to integrate your
customizations into your new WordPress theme instead of just overwriting the old theme. If you have not
customized your theme’s code and have merely customized it using the web admin interface that
WordPress provides (without changing any of it’s files), then you can follow the procedure below:

1. First create a backup of your WordPress site.
2. Download a ZIP file of the theme you plan to upgrade.
3. Unzip the theme files onto your local machine.
4. Use sFTP to delete your existing theme directory from the wp-content/themes/ directory.
5. Replace the deleted directory by uploading the unzipped theme into your wp-

content/themes/ directory. You should now have a structure that looks something like wp-
content/themes/theme-name/

6. Sign into your WordPress site. Go to Appearance > Themes and verify you are running the newest
version of your theme.

One-Click WordPress installation to automatically update

You can use either the One-Click Installs page in the panel or log into your WordPress panel to set up
automatic upgrades.

To use the One-Click Install feature in the panel to request upgrade notifications:

1. Open your panel.
2. Choose your domain.
3. Click the edit link under the ‘Upgrade Action’ column.

4. Select the Upgrade automatically option.

Please note that all One-Click Installs require that the domain they are being installed onto is set to Fully
Hosted.

 When you request automatic upgrades, DreamHost updates the packages in the installer whenever
they become available and notifies you via email.

Prof. Harsh Joshi Page 43

 You can also update your site by logging into your WordPress dashboard. From there, you can
update your core WordPress install, plugins, and themes.

WordPress Database Structure

WordPress is written using PHP as its scripting language and MySQL as its database management system.
For using WordPress you don’t need to learn php & MySQL, but if you have basic understanding of how it
works that will be enough to solve any problems that you will get into. Here in this article you will learn
about WordPress database structure.

Default installation of WordPress comes with eleven tables. These are the following tables.

1. wp_commentmeta
o Each comment features information called the meta data and it is stored in the

wp_commentmeta.
2. wp_comments

o The comments within WordPress are stored in the wp_comments table.
3. wp_links

o The wp_links holds information related to the links entered into the Links feature of
WordPress.

4. wp_options
o The Options set under the Administration > Settings panel are stored in the wp_options

table.
5. wp_postmeta

o Each post features information called the meta data and it is stored in the wp_postmeta.
Some plugins may add their own information to this table.

6. wp_posts
o The core of the WordPress data is the posts. It is stored in the wp_posts table. Also Pages

and navigation menu items are stored in this table.
7. wp_terms

o The categories for both posts and links and the tags for posts are found within the
wp_terms table.

8. wp_term_relationships
o Posts are associated with categories and tags from the wp_terms table and this association

is maintained in the wp_term_relationships table. The association of links to their respective
categories are also kept in this table.

9. wp_term_taxonomy
o This table describes the taxonomy (category, link, or tag) for the entries in the wp_terms

table.
10. wp_usermeta

o Each user features information called the meta data and it is stored in wp_usermeta.
11. wp_users

o The list of users is maintained in table wp_users.

Above are the eleven tables, wp_ is the database prefix, we can change database prefix while installing
WordPress.

Prof. Harsh Joshi Page 44

UNIT 3

Theme

What is a WordPress Theme?

A WordPress theme provides all of the front end styling of your WordPress site.

Most WordPress themes provide:

 the overall design or style of your site
 font styling
 colors
 widget locations
 page layouts (or templates)
 styles for blog posts and blog archives
 additional stylistic details

Themes take the content and data stored by WordPress and display it in the browser. When you create
a WordPress theme, you decide how that content looks and is displayed. There are many options available
to you when building your theme. For example:

 Your theme can have different layouts, such as static or responsive, using one column or two.
 Your theme can display content anywhere you want it to be displayed.
 Your theme can specify which devices or actions make your content visible.
 Your theme can customize its typography and design elements using CSS.
 Other design elements like images and videos can be included anywhere in your theme.

WordPress themes are incredibly powerful. But, as with every web design project, a theme is more than
color and layout. Good themes improve engagement with your website’s content in addition to being
beautiful.

How to install & activate theme

Access install theme functionality in your WP admin

The first thing you need to do when you want to install a new WordPress theme is to login to your site
admin page. Once there, go to Appearance -> Themes.

Prof. Harsh Joshi Page 45

Here, you will see all the themes you have currently installed in your application. To add another one,
simply click on the Install Themes tab.

On this page there are two ways to add a new theme. You can either use the search field which will return
results from the WordPress.org theme directory or you can upload a theme from your local hard drive. In
this tutorial we will show you how to add themes in both ways.

Choose and Install a theme from the official WordPress theme directory

The easiest way to install themes to your WordPress site is if they are listed in the official themes directory.
This allows you to search for the theme you need directly from your site admin page. Each theme in the
official directory has to have Tags that describe its functionality allowing you to easily search for the right
theme.

If you know the theme's name, you can simply search for it.

Prof. Harsh Joshi Page 46

However, usually that's not the case. This is why, you can use the Feature Filter. For example, you can
search for a Black and White, Two columns theme that has Flexible Width. Simply check those tags and
press the Apply Filters button.

You will now see all themes that meet your search. Hover over any of them and you will see two options -
to see a demo of the theme or to install it. Once you choose which theme you want to use for your site,
press the blue Install button.

Your WordPress application will download and install the theme for you. Simply click the Acticate link on
the next page you will be redirected to.

That's all - you can go to the front page of your site to see its new looks.

Upload a theme you have already downloaded

If you have a theme that's not listed in the WordPress.org directory, you can simply upload it from the
Themes -> Install Themes section in WordPress. To do this click on the Upload link at the top of the page.

Prof. Harsh Joshi Page 47

Now, click the Choose File button, select the archive of your theme from your local computer and press the
Install Now button.

In few seconds, WordPress will upload and extract the theme archive for you. All you need to do next is to
press the Activate link under the message for successful theme installation.

That's it! You can now go to the front end of your site and see the newly activated theme.

Introduction of common WordPress theme template files

Template Files List

Here is the list of the Theme files recognized by WordPress. Of course, your Theme can contain any other
stylesheets, images, or files. Just keep in mind that the following have special meaning to WordPress -- see
Template Hierarchy for more information.

Prof. Harsh Joshi Page 48

style.css

The main stylesheet. This must be included with your Theme, and it must contain the information header
for your Theme.

rtl.css

The rtl stylesheet. This will be included automatically if the website's text direction is right-to-left. This can
be generated using the RTLer plugin.

index.php

The main template. If your Theme provides its own templates, index.php must be present.

comments.php

The comments template.

front-page.php

The front page template.

home.php

The home page template, which is the front page by default. If you use a static front page this is the
template for the page with the latest posts.

single.php

The single post template. Used when a single post is queried. For this and all other query templates,
index.php is used if the query template is not present.

single-{post-type}.php

The single post template used when a single post from a custom post type is queried. For example, single-
book.php would be used for displaying single posts from the custom post type named "book". index.php is
used if the query template for the custom post type is not present.

page.php

The page template. Used when an individual Page is queried.

category.php

The category template. Used when a category is queried.

tag.php

The tag template. Used when a tag is queried.

https://codex.wordpress.org/Creating_a_Static_Front_Page
https://codex.wordpress.org/Pages
https://codex.wordpress.org/Category_Templates
https://codex.wordpress.org/Tag_Templates

Prof. Harsh Joshi Page 49

taxonomy.php

The term template. Used when a term in a custom taxonomy is queried.

author.php

The author template. Used when an author is queried.

date.php

The date/time template. Used when a date or time is queried. Year, month, day, hour, minute, second.

archive.php

The archive template. Used when a category, author, or date is queried. Note that this template will be
overridden by category.php, author.php, and date.php for their respective query types.

search.php

The search results template. Used when a search is performed.

attachment.php

Attachment template. Used when viewing a single attachment.

image.php

Image attachment template. Used when viewing a single image attachment. If not present,
attachment.php will be used.

404.php

The 404 Not Found template. Used when WordPress cannot find a post or page that matches the query.

These files have a special meaning with regard to WordPress because they are used as a replacement for
index.php, when available, according to the Template Hierarchy, and when the corresponding Conditional
Tag returns true. For example, if only a single post is being displayed, the is_single() function returns 'true',
and, if there is a single.php file in the active Theme, that template is used to generate the page.

Basic Templates

At the very minimum, a WordPress Theme consists of two files:

 style.css
 index.php

Both of these files go into the Theme directory. The index.php template file is very flexible. It can be used
to include all references to the header, sidebar, footer, content, categories, archives, search, error, and any
other page created in WordPress.

https://codex.wordpress.org/index.php?title=Taxonomy_Templates&action=edit&redlink=1
https://codex.wordpress.org/Author_Templates
https://codex.wordpress.org/Template_Hierarchy
https://codex.wordpress.org/Conditional_Tags
https://codex.wordpress.org/Conditional_Tags
https://codex.wordpress.org/Conditional_Tags
https://codex.wordpress.org/Conditional_Tags#A_Single_Post_Page
https://codex.wordpress.org/Stepping_Into_Templates

Prof. Harsh Joshi Page 50

Or, it can be divided into modular template files, each one taking on part of the workload. If you do not
provide other template files, WordPress may have default files or functions to perform their jobs. For
example, if you do not provide a searchform.php template file, WordPress has a default function to display
the search form.

Typical template files include:

 comments.php
 comments-popup.php
 footer.php
 header.php
 sidebar.php

Using these template files you can put template tags within the index.php master file to include these
other files where you want them to appear in the final generated page.

 To include the header, use get_header().
 To include the sidebar, use get_sidebar().
 To include the footer, use get_footer().
 To include the search form, use get_search_form().

Here is an example of the include usage:

<?php get_sidebar(); ?>

<?php get_footer(); ?>

Widget

What is widget ?

WordPress Widgets add content and features to your Sidebars. Examples are the default widgets that
come with WordPress; for Categories, Tag cloud, Search, etc. Plugins will often add their own widgets.

Widgets were originally designed to provide a simple and easy-to-use way of giving design and structure
control of the WordPress Theme to the user, which is now available on properly "widgetized" WordPress
Themes to include the header, footer, and elsewhere in the WordPress design and structure. Widgets
require no code experience or expertise. They can be added, removed, and rearranged on the Theme
Customizer or Appearance > Widgets in the WordPress Administration Screens.

Some WordPress Widgets offer customization and options such as forms to fill out, includes or excludes of
data and information, optional images, and other customization features.

The Appearance Widgets Screen explains how to use the various Widgets that come delivered with
WordPress.

Plugins that come bundled with widgets can be found in the WordPress Plugin Directory.

https://codex.wordpress.org/Function_Reference/get_header
https://codex.wordpress.org/Function_Reference/get_sidebar
https://codex.wordpress.org/Function_Reference/get_footer
https://codex.wordpress.org/Function_Reference/get_search_form
https://codex.wordpress.org/Sidebars
https://codex.wordpress.org/Appearance_Widgets_Screen
http://wordpress.org/extend/plugins/

Prof. Harsh Joshi Page 51

Installing Widgets

WordPress comes pre-packaged with a variety of Glossary#Widget Widgets. If those are insufficient for
your needs you can install new ones by searching the WordPress Plugin Directory which is accessible from
the WordPress Administration Plugins > Add New Screen.

Displaying Widgets

Existing Widgets in Existing Widget Areas

Before you can add a Widget you must verify that the Theme you're using supports Widgets (more
specifically: Glossary#Widget_Area Widget Areas). You can do so by simply navigating to the Appearance
menu and looking for a sub menu titled "Widgets".

If your Theme supports Theme Customizer then you can use the following Steps. In Theme Customizer, the
live preview of changes is available.

1. Go to Appearance > Customize in the WordPress Administration Screens.
2. Click the Widget menu in the Theme Customizer to access to the Widget Customize Screen.
3. Click the down arrow of Widget Area to list the already registered Widgets.
4. Click Add a Widget button at the bottom of sidebar. It shows the list of available widgets.
5. Click a widget you want to add. The widgets should be added in the sidebar.
6. Preview your site and you should see the content from your new Widget.
7. To arrange the Widgets within the Sidebar, drag and drop the widgets in the order you want or click

Reorder link and click up arrow and down allow of each widget and click Done after the arrange
operation.

8. To customize the Widget features, click the down arrow in the right to expand the Widget's
interface.

9. To remove the widget, click Remove from Widget's interface in above step.

If your Theme does not support Theme Customizer then you can use the following conventional steps:

https://codex.wordpress.org/Glossary#Widget_Widgets
http://wordpress.org/extend/plugins/
https://codex.wordpress.org/Glossary#Widget_Area_Widget_Areas

Prof. Harsh Joshi Page 52

1. Go to Appearance > Widgets in the WordPress Administration Screens.
2. Choose a Widget and either drag it to the sidebar where you wish it to appear, or click the widget,

(select a destination sidebar if your theme has more than one) and click the Add Widget button.
There might be more than one sidebar option, so begin with the first one. Once in place, WordPress
automatically updates the Theme.

3. Preview the site. You should find that the "default" sidebar elements are now gone and only the
new addition is visible.

4. Return to the Widgets Screen to continue adding Widgets.
5. To arrange the Widgets within the sidebar or Widget area, click and drag it into place.
6. To customize the Widget features, click the down arrow in the upper right corner to expand the

Widget's interface.
7. To save the Widget's customization, click Save.
8. To remove the Widget, click Delete.

If you want to remove the widget but save its setting for possible future use, just drag it into the Inactive
Widgets area. You can add them back anytime from there. This is especially helpful when you switch to a
theme with fewer or different widget areas.

When changing themes, there is often some variation in the number and setup of widget areas/sidebars
and sometimes these conflicts make the transition a bit less smooth. If you changed themes and seem to
be missing widgets, scroll down on the screen to the Inactive Widgets area, where all of your widgets and
their settings will have been saved.

Enabling Accessibility Mode, via Screen Options, allows you to use Add and Edit buttons instead of using
drag and drop.

Widget Areas

While widget areas typically occur in webpage sidebars, a theme can place widget areas anywhere on a
page. For example, besides the usual sidebar locations, the Twenty Fourteen theme has a widget area in
the footer of every page.

If you would like to place a Widget somewhere on your Theme that does not have a pre-defined Widget
Area, you will need some programming knowledge and should follow the instructions on the Widgets API
section found here.

https://codex.wordpress.org/Twenty_Fourteen
http://codex.wordpress.org/Widgets_API
http://codex.wordpress.org/Widgets_API#Displaying_Widgets_and_Widget_Areas

Prof. Harsh Joshi Page 53

Widget Management

Widgets are small blocks that perform specific functions. These give design and structure control to the
WordPress theme. Some specific features of a widget are −

 They help you add content and features.
 They can be easily dragged and dropped in widget area.
 They vary from theme to theme. They are not same for every theme.

Step (1) − Click on Appearance → Widgets.

Step (2) − The following screen showing available widgets appear.

The following functions appear on the page −

 Available Widgets − You can use these to add into your sidebar main.
 Inactive Sidebar (not used) − These are not used and can be removed permanently from the widget

list.
 Inactive Widgets − Removes the widgets from sidebar but keep it in the settings.
 Sidebar Main − Any widget you add here will appear on your site.
 Manage in Customizer − Takes you back to customization page.

Prof. Harsh Joshi Page 54

Prof. Harsh Joshi Page 55

Step (3) − Drag and drop in the Sidebar Main. Any widget you add here, shows up on your site.

Plugin

Introduction

Plugins are ways to extend and add to the functionality that already exists in WordPress.

The core of WordPress is designed to be lean and lightweight, to maximize flexibility and minimize code
bloat. Plugins then offer custom functions and features so that each user can tailor their site to their
specific needs.

For instructions and information on downloading, installing, upgrading, troubleshooting, and managing
your WordPress Plugins, see Managing Plugins. If you want to develop your own plugin, there is a
comprehensive list of resources in Plugin Resources.

For instructions and information on downloading, installing, upgrading, troubleshooting, and managing
your WordPress Plugins, see Managing Plugins. If you want to develop your own plugin, there is a
comprehensive list of resources in Plugin Resources.

Plugin Repositories

WordPress Plugins are available from several sources. The most popular and official source for WordPress
Plugins is the WordPress.org repo.

 Official WordPress Plugins Repository

Just to note, not all WordPress Plugins make it into the above repository. Search the web for "WordPress
Plugin" and the keywords for the type of functionality you are seeking. There is bound to be a solution out
there for you.

Default Plugins

The following two plugins are included with WordPress core:

https://codex.wordpress.org/Managing_Plugins
https://codex.wordpress.org/Plugin_Resources
https://codex.wordpress.org/Managing_Plugins
https://codex.wordpress.org/Plugin_Resources
https://wordpress.org/plugins/

Prof. Harsh Joshi Page 56

Akismet

Akismet checks your comments against the Akismet web service to see if they look like spam or not. You
can review the spam it catches under "Manage" and it automatically deletes old spam after 15 days.

Install and activate plugin

There are three methods: installing a WordPress plugin using search, uploading a WordPress plugin, and
manually installing a WordPress plugin using FTP.

Install a Plugin using WordPress Plugin Search

The easiest way of installing a WordPress plugin is to use the plugin search. The only downside of this
option is that a plugin must be in the WordPress plugin directory which is limited to only free plugins.

First thing you need to do is go to your WordPress admin area and click on Plugins » Add New.

You will see a screen like the one in the screenshot above. Find the plugin by typing the plugin name or the
functionality you are looking for, like we did. After that, you will see a bunch of listings like the example
below:

https://codex.wordpress.org/Akismet
https://wordpress.org/plugins/
http://www.wpbeginner.com/glossary/admin-area/

Prof. Harsh Joshi Page 57

You can pick the plugin that is best for you. Since in our search, we were looking for Floating Social Bar
which happens to be the first plugin, we will click the ‘Install Now’ button.

WordPress will now download and install the plugin for you. After this, you will see the success message
with a link to activate the plugin or return to plugin installer.

A WordPress plugin can be installed on your site, but it will not work unless you activate it. So go ahead
and click on the activate plugin link to activate the plugin on your WordPress site.

That’s all, you have successfully installed your first WordPress plugin.

The next step is to configure the plugin settings. These settings will vary for each plugin therefore we will
not be covering that in this post.

http://www.wpbeginner.com/floating-social-bar/

Prof. Harsh Joshi Page 58

Install a Plugin using the WordPress Admin Plugin Upload

Paid WordPress plugins are not listed in the WordPress plugin directory. These plugins cannot be installed
using the first method.

That’s why WordPress has the Upload method to install such plugins. We will show you how to install
WordPress plugin using the upload option in the admin area.

First, you need to download the plugin from the source (which will be a zip file). Next, you need to go to
WordPress admin area and visit Plugins » Add New page.

After that, click on the Upload Plugin button on top of the page.

This will bring you to the plugin upload page. Here you need to click on the choose file button and select
the plugin file you downloaded earlier to your computer.

Prof. Harsh Joshi Page 59

After you have selected the file, you need to click on the install now button.

WordPress will now upload the plugin file from your computer and install it for you. You will see a success
message like this after installation is finished.

Once installed, you need to click on the Activate Plugin link to start using the plugin.

You would have to configure the settings to fit your needs. These settings will vary for each plugin
therefore we will not be covering that in this post.

Manually Install a WordPress Plugin using FTP

In some cases, your WordPress hosting provider may have file restrictions that could limit your ability to
install a plugin from the admin area.

In this situation, your best bet is to install the plugin manually using FTP.

The FTP manager method is the least friendly for beginners.

First you will need to download the plugin’s source file (it will be a zip file). Next, you need to extract the
zip file on your computer.

Extracting the plugin zip file will create a new folder with the same name. This is the folder that you need
to manually upload to your website using a FTP client.

You would need to access your host through the FTP manager. If you do not have your FTP username and
password, then contact your WordPress hosting provider and ask them.

Open the FTP client on your computer and connect to your website using the login credentials provided by
your web host. Once connected, you need to access the path /wp-content/plugins/

Next, upload the folder you extracted from the zip file to the /wp-content/plugins/ folder on your web
server.

http://www.wpbeginner.com/wordpress-hosting/
http://www.wpbeginner.com/showcase/6-best-ftp-clients-for-wordpress-users/
http://www.wpbeginner.com/wordpress-hosting/

Prof. Harsh Joshi Page 60

After uploading the files, you need to visit the WordPress admin area and click on the Plugins link in the
admin menu. You will see your plugin successfully installed on the plugins page.

You need to click on the Activate link below the plugin. Upon activating, you may need to configure the
plugin settings. WordPress plugins come with their own settings which differ from one plugin to another so
we will not describe them here.

Useful plugins for website

Seo yoast

Everyone who is blogging has heard a thing or two about SEO. You know that it is important for your site to
have good SEO. WordPress is extremely well-coded which is why many call it SEO friendly. But the real SEO
benefit comes from WordPress plugins WordPress SEO by Yoast. This plugin is by far the most complete
SEO solution that is available for WordPress. It has received over a million downloads. We use WordPress
SEO plugin to improve our on-page SEO.

Prof. Harsh Joshi Page 61

Unlike most other plugins this plugin is way more than simple meta tag additions. We use it to add custom
post title, meta description, and meta keyword for our posts, pages, and taxonomies (tag, category, etc).
When writing the meta information, WordPress SEO plugin shows you a Google search result snippet
preview, so you can see exactly how your content will look when someone search for it in Google. It even
has the ability to get you verified google authorship for your site.

It helps us create XML sitemaps that support images. It also gives us the ability to have advanced
configuration such as removing a specific post, page, post type, or a taxonomy from the sitemap. It notifies
search engines automatically once your content is published.

Contact form 7

Any Blog, Website or service is incomplete without a contact page. A contact page is basically, where your
readers can use to contact you. When it comes to WordPress, there are many contact form WordPress
plugin and one of the most simple and smart one is, Contact form 7 plugin. This plugin, is more like
activate, copy, paste and ready to go plugin. CF7 plugin is a WordPress Email form plugin which is useful to
add contact form on WordPress contact or service pages.

WordPress contact form 7 plugin, comes with multiple contact form options and you can add additional
field, for example if you need to get phone number of the sender, you can add another field into your form
easily.

Wp contact form 7 Plugin features :

 Multiple contact form
 Spam prevention
 Bot prevention with CAPTCHA
 Customization enabled

Woocommerce

WooCommerce is a free eCommerce plugin that allows you to sell anything, beautifully. Built to integrate
seamlessly with WordPress, WooCommerce is the world’s favorite eCommerce solution that gives both
store owners and developers complete control.

With endless flexibility and access to hundreds of free and premium WordPress extensions,
WooCommerce now powers 30% of all online stores — more than any other platform.

With WooCommerce, you can sell both physical and digital goods in all shapes and sizes, offer product
variations, multiple configurations, and instant downloads to shoppers, and even sell affiliate goods from
online marketplaces.

WP Super Cache

This plugin generates static html files from your dynamic WordPress blog. After a html file is generated
your webserver will serve that file instead of processing the comparatively heavier and more expensive
WordPress PHP scripts.

Prof. Harsh Joshi Page 62

The static html files will be served to the vast majority of your users, but because a user’s details are
displayed in the comment form after they leave a comment those requests are handled by the legacy
caching engine. Static files are served to:

1. Users who are not logged in.
2. Users who have not left a comment on your blog.
3. Or users who have not viewed a password protected post.

99% of your visitors will be served static html files. Those users who don’t see the static files will still
benefit because they will see different cached files that aren’t quite as efficient but still better than
uncached. This plugin will help your server cope with a front page appearance on digg.com or other social
networking site.

If for some reason “supercaching” doesn’t work on your server then don’t worry. Caching will still be
performed, but every request will require loading the PHP engine. In normal circumstances this isn’t bad at
all. Visitors to your site will notice no slowdown or difference. Supercache really comes into it’s own if your
server is underpowered, or you’re experiencing heavy traffic.
Super Cached html files will be served more quickly than PHP generated cached files but in every day use,
the difference isn’t noticeable.

Regenerate Thumbnails

Regenerate Thumbnails allows you to regenerate the thumbnails for your image attachments. This is very
handy if you’ve changed any of your thumbnail dimensions (via Settings -> Media) after previously
uploading images or have changed to a theme with different featured post image dimensions.

You can either regenerate the thumbnails for all image uploads, individual image uploads, or specific
multiple image uploads.

Advanced Custom Fields

Advanced Custom Fields is the perfect solution for any WordPress website which needs more flexible data
like other Content Management Systems.

 Visually create your Fields
 Select from multiple input types (text, textarea, wysiwyg, image, file, page link, post object,

relationship, select, checkbox, radio buttons, date picker, true / false, repeater, flexible content,
gallery and more to come!)

 Assign your fields to multiple edit pages (via custom location rules)
 Easily load data through a simple and friendly API
 Uses the native WordPress custom post type for ease of use and fast processing
 Uses the native WordPress metadata for ease of use and fast processing.

Prof. Harsh Joshi Page 63

Unit 4

Theme development

Anatomy of a Theme: header.php, footer.php and sidebar.php

Anatomy of a Theme

WordPress Themes live in subdirectories of the WordPress themes directory (wp-content/themes/ by
default) which cannot be directly moved using the wp-config.php file. The Theme's subdirectory holds all of
the Theme's stylesheet files, template files, and optional functions file (functions.php), JavaScript files, and
images. For example, a Theme named "test" would reside in the directory wp-content/themes/test/. Avoid
using numbers for the theme name, as this prevents it from being displayed in the available themes list.

WordPress includes a default theme in each new installation. Examine the files in the default theme
carefully to get a better idea of how to build your own Theme files.

For a visual guide, see this info graphic on WordPress Theme Anatomy.

WordPress Themes typically consist of three main types of files, in addition to images and JavaScript files.

1. The stylesheet called style.css, which controls the presentation (visual design and layout) of the
website pages.

2. WordPress template files which control the way the site pages generate the information from your
WordPress database to be displayed on the site.

3. The optional functions file (functions.php) as part of the WordPress Theme files.

Document Head (header.php)

 Use the proper DOCTYPE.
 The opening <html> tag should include language_attributes().
 The <meta> charset element should be placed before everything else, including the <title> element.
 Use bloginfo() to set the <meta> charset and description elements.
 Use wp_title() to set the <title> element. See why.
 Use Automatic Feed Links to add feed links.
 Add a call to wp_head() before the closing </head> tag. Plugins use this action hook to add their

own scripts, stylesheets, and other functionality.
 Do not link the theme stylesheets in the Header template. Use the wp_enqueue_scripts action

hook in a theme function instead.

Here's an example of a correctly-formatted HTML5 compliant head area:

<!DOCTYPE html>
<html <?php language_attributes(); ?>>
 <head>
 <meta charset="<?php bloginfo('charset'); ?>" />
 <title><?php wp_title(); ?></title>
 <link rel="profile" href="http://gmpg.org/xfn/11" />

https://codex.wordpress.org/Editing_wp-config.php#Moving_themes_folder
https://codex.wordpress.org/Stepping_Into_Templates
http://yoast.com/wordpress-theme-anatomy/
https://codex.wordpress.org/Stepping_Into_Templates
http://en.wikipedia.org/wiki/Document_Type_Declaration
https://codex.wordpress.org/Function_Reference/language_attributes
https://codex.wordpress.org/Function_Reference/bloginfo
https://codex.wordpress.org/Function_Reference/wp_title
https://codex.wordpress.org/Function_Reference/wp_title#Note
https://codex.wordpress.org/Automatic_Feed_Links
https://codex.wordpress.org/Function_Reference/wp_head
https://codex.wordpress.org/Plugin_API/Action_Reference
https://codex.wordpress.org/Plugin_API/Action_Reference/wp_enqueue_scripts

Prof. Harsh Joshi Page 64

 <link rel="pingback" href="<?php bloginfo('pingback_url'); ?>" />
 <?php if (is_singular() && get_option('thread_comments')) wp_enqueue_script('comment-reply'
); ?>
 <?php wp_head(); ?>
 </head>

Navigation Menus (header.php)

 The Theme's main navigation should support a custom menu with wp_nav_menu().
o Menus should support long link titles and a large amount of list items. These items should

not break the design or layout.
o Submenu items should display correctly. If possible, support drop-down menu styles for

submenu items. Drop-downs allowing showing menu depth instead of just showing the top
level.

Widgets (sidebar.php)

 The Theme should be widgetized as fully as possible. Any area in the layout that works like a widget
(tag cloud, blogroll, list of categories) or could accept widgets (sidebar) should allow widgets.

 Content that appears in widgetized areas by default (hard-coded into the sidebar, for example)
should disappear when widgets are enabled from Appearance > Widgets.

Footer (footer.php)

 Use the wp_footer() call, to appear just before closing body tag.

<?php wp_footer(); ?>
</body>
</html>

Template Files List

Here is the list of the Theme files recognized by WordPress. Of course, your Theme can contain any other
stylesheets, images, or files. Just keep in mind that the following have special meaning to WordPress -- see
Template Hierarchy for more information.

style.css
The main stylesheet. This must be included with your Theme, and it must contain the information
header for your Theme.

rtl.css
The rtl stylesheet. This will be included automatically if the website's text direction is right-to-left.
This can be generated using the RTLer plugin.

index.php
The main template. If your Theme provides its own templates, index.php must be present.

comments.php
The comments template.

front-page.php
The front page template.

https://codex.wordpress.org/Function_Reference/wp_nav_menu
https://codex.wordpress.org/Function_Reference/wp_footer
https://codex.wordpress.org/Template_Hierarchy
http://wordpress.org/extend/plugins/rtler/

Prof. Harsh Joshi Page 65

home.php
The home page template, which is the front page by default. If you use a static front page this is the
template for the page with the latest posts.

single.php
The single post template. Used when a single post is queried. For this and all other query templates,
index.php is used if the query template is not present.

single-{post-type}.php
The single post template used when a single post from a custom post type is queried. For example,
single-book.php would be used for displaying single posts from the custom post type named
"book". index.php is used if the query template for the custom post type is not present.

page.php
The page template. Used when an individual Page is queried.

category.php
The category template. Used when a category is queried.

tag.php
The tag template. Used when a tag is queried.

taxonomy.php
The term template. Used when a term in a custom taxonomy is queried.

author.php
The author template. Used when an author is queried.

date.php
The date/time template. Used when a date or time is queried. Year, month, day, hour, minute,
second.

archive.php
The archive template. Used when a category, author, or date is queried. Note that this template will
be overridden by category.php, author.php, and date.php for their respective query types.

search.php
The search results template. Used when a search is performed.

attachment.php
Attachment template. Used when viewing a single attachment.

image.php
Image attachment template. Used when viewing a single image attachment. If not present,
attachment.php will be used.

404.php
The 404 Not Found template. Used when WordPress cannot find a post or page that matches the
query.

These files have a special meaning with regard to WordPress because they are used as a replacement for
index.php, when available, according to the Template Hierarchy, and when the corresponding Conditional
Tag returns true. For example, if only a single post is being displayed, the is_single() function returns 'true',
and, if there is a single.php file in the active Theme, that template is used to generate the page.

The Loop

The Loop is PHP code used by WordPress to display posts. Using The Loop, WordPress processes each post
to be displayed on the current page, and formats it according to how it matches specified criteria within
The Loop tags. Any HTML or PHP code in the Loop will be processed on each post.

https://codex.wordpress.org/Creating_a_Static_Front_Page
https://codex.wordpress.org/Pages
https://codex.wordpress.org/Category_Templates
https://codex.wordpress.org/Tag_Templates
https://codex.wordpress.org/index.php?title=Taxonomy_Templates&action=edit&redlink=1
https://codex.wordpress.org/Author_Templates
https://codex.wordpress.org/Creating_an_Error_404_Page
https://codex.wordpress.org/Template_Hierarchy
https://codex.wordpress.org/Conditional_Tags
https://codex.wordpress.org/Conditional_Tags
https://codex.wordpress.org/Conditional_Tags
https://codex.wordpress.org/Conditional_Tags#A_Single_Post_Page
https://codex.wordpress.org/Glossary#HTML
https://codex.wordpress.org/Glossary#PHP

Prof. Harsh Joshi Page 66

When WordPress documentation says "This tag must be within The Loop", such as for specific Template
Tags or plugins, the tag will be repeated for each post. For example, The Loop displays the following
information by default for each post:

 Title (the_title())
 Time (the_time())
 Categories (the_category()).

You can display other information about each post using the appropriate Template Tags or (for advanced
users) by accessing the $post variable, which is set with the current post's information while The Loop is
running.

The loop starts here:

<?php if (have_posts()) : while (have_posts()) : the_post(); ?>

and ends here:

<?php endwhile; else : ?>
 <p><?php _e('Sorry, no posts matched your criteria.'); ?></p>
<?php endif; ?>

This is using PHP's alternative syntax for control structures, and could also be expressed as:

<?php
if (have_posts()) {
 while (have_posts()) {
 the_post();
 //
 // Post Content here
 //
 } // end while
} // end if
?>

Template Tags

1. General tags

wp_head()

Description

Fire the 'wp_head' action. Put this template tag immediately before </head> tag in a theme template (ex.
header.php, index.php).

Usage

 <?php wp_head(); ?>

https://codex.wordpress.org/Template_Tags
https://codex.wordpress.org/Template_Tags
https://codex.wordpress.org/Template_Tags
https://codex.wordpress.org/Template_Tags/the_title
https://codex.wordpress.org/Template_Tags/the_time
https://codex.wordpress.org/Template_Tags/the_category
https://codex.wordpress.org/Template_Tags
https://codex.wordpress.org/Plugin_API/Action_Reference/wp_head
https://codex.wordpress.org/Theme_Development#Template_Files

Prof. Harsh Joshi Page 67

Parameters

This function does not accept any parameters.

Return values

None.

Examples

wp-content/themes/twentyten/header.php:

<?php
 ...
 /* Always have wp_head() just before the closing </head>
 * tag of your theme, or you will break many plugins, which
 * generally use this hook to add elements to <head> such
 * as styles, scripts, and meta tags.
 */

wp_head();
 ?>
 </head>

get_footer()

Description

Includes the footer.php template file from your current theme's directory. if a name is specified then a
specialised footer footer-{name}.php will be included.

If the theme contains no footer.php file then the footer from the default theme wp-includes/theme-
compat/footer.php will be included.

Usage

<?php get_footer($name); ?>

Parameters

$name
(string) (optional) Calls for footer-name.php.
Default: None

Return Values

None.

https://core.trac.wordpress.org/browser/tags/4.7.3/src/wp-content/themes/twentyten/header.php#L0
https://codex.wordpress.org/Include_Tags
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String

Prof. Harsh Joshi Page 68

Examples

Simple 404 page

The following code is a simple example of a template for an "HTTP 404: Not Found" error (which you could
include in your Theme as 404.php).

<?php get_header(); ?>
<h2>Error 404 - Not Found</h2>
<?php get_sidebar(); ?>
<?php get_footer(); ?>

Multiple Footers

Different footer for different pages.

<?php
if (is_home()) :
 get_footer('home');
elseif (is_404()) :
 get_footer('404');
else :
 get_footer();
endif;
?>

get_header()

Description

Includes the header.php template file from your current theme's directory. If a name is specified then a
specialised header header-{name}.php will be included.

If the theme contains no header.php file then the header from the default theme wp-includes/theme-
compat/header.php will be included.

Usage

<?php get_header($name); ?>

Parameters

$name
(string) (optional) Calls for header-name.php.
Default: None

https://codex.wordpress.org/Theme_Development
https://codex.wordpress.org/Include_Tags
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String

Prof. Harsh Joshi Page 69

Examples

Simple 404 page

The following code is a simple example of a template for an "HTTP 404: Not Found" error (which you could
include in your Theme as 404.php).

<?php get_header(); ?>
<h2>Error 404 - Not Found</h2>
<?php get_sidebar(); ?>
<?php get_footer(); ?>

Multiple Headers

Different header for different pages.

<?php
if (is_home()) :
 get_header('home');
elseif (is_404()) :
 get_header('404');
else :
 get_header();
endif;
?>

get_sidebar()

Description

This function calls each of the active widget callbacks in order, which prints the markup for the sidebar. If
you have more than one sidebar, you should give this function the name or number of the sidebar you
want to print. This function returns true on success and false on failure.

The return value should be used to determine whether to display a static sidebar. This ensures that your
theme will look good even when the Widgets plug-in is not active.

If your sidebars were registered by number, they should be retrieved by number. If they had names when
you registered them, use their names to retrieve them.

Usage

 <?php dynamic_sidebar($index); ?>

Parameters

index
(integer/string) (optional) Name or ID of dynamic sidebar.
Default: 1

https://codex.wordpress.org/Theme_Development
https://codex.wordpress.org/Sidebars
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Integer.2Fstring

Prof. Harsh Joshi Page 70

Return Value

(boolean)
True, if widget sidebar was found and called. False if not found or not called.

Examples

Here is the recommended use of this function:

<?php if (is_active_sidebar('left-sidebar')) : ?>
 <ul id="sidebar">
 <?php dynamic_sidebar('left-sidebar'); ?>

<?php endif; ?>
<ul id="sidebar">
 <?php dynamic_sidebar('right-sidebar'); ?>

<ul id="sidebar">
<?php if (! dynamic_sidebar()) : ?>
 {static sidebar item 1}
 {static sidebar item 2}
<?php endif; ?>

get_search_form()

Description

Will first attempt to locate the searchform.php file in either the child or the parent, then load it. If it
doesn’t exist, then the default search form will be displayed. The default search form is HTML, which will
be displayed. There is a filter applied to the search form HTML in order to edit or replace it. The filter is
‘get_search_form’.

This function is primarily used by themes which want to hardcode the search form into the sidebar and
also by the search widget in WordPress.

There is also an action that is called whenever the function is run called, ‘pre_get_search_form’. This can
be useful for outputting JavaScript that the search relies on or various formatting that applies to the
beginning of the search. To give a few examples of what it can be used for.

Parameters

$echo

(bool) (Optional) Default to echo and not return the form.

Default value: true

Return

https://developer.wordpress.org/reference/hooks/get_search_form/
https://developer.wordpress.org/reference/hooks/pre_get_search_form/

Prof. Harsh Joshi Page 71

(string|void) String when $echo is false.

bloginfo()

Description

Retrieves information about the current blog. The function is located in: /wp-includes/general-
template.php

Parameters

$show
(string) (optional) What information to get.
Default: name

$filter
(string) (optional) Get raw or display information.
Default: raw

$show

 url
 wpurl
 description
 rdf_url
 rss_url
 rss2_url
 atom_url
 comments_atom_url
 comments_rss2_url
 pingback_url
 stylesheet_url
 stylesheet_directory
 template_directory
 template_url
 admin_email
 charset
 html_type
 version
 language
 text_direction
 name

Return Values

(string)
Returns the requested information.

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String

Prof. Harsh Joshi Page 72

Usage

<?php get_bloginfo($show, $filter); ?>

wp_title()

Description

By default, the page title will display the separator before the page title, so that the blog title will be before
the page title. This is not good for title display, since the blog title shows up on most tabs and not what is
important, which is the page that the user is looking at.

There are also SEO benefits to having the blog title after or to the ‘right’ of the page title. However, it is
mostly common sense to have the blog title to the right with most browsers supporting tabs. You can
achieve this by using the seplocation parameter and setting the value to ‘right’. This change was
introduced around 2.5.0, in case backward compatibility of themes is important.

Parameters

$sep

(string) (Optional) default is '»'. How to separate the various items within the page title.

Default value: '»'
$display

(bool) (Optional) Whether to display or retrieve title.

Default value: true
$seplocation

(string) (Optional) Direction to display title, 'right'.

Default value: ''

Return

(string|null) String on retrieve, null when displaying.

single_post_title()

Description

Displays or returns the title of the post when on a single post page (permalink page). This tag can be useful
for displaying post titles outside The Loop.

Usage

 <?php single_post_title($prefix, $display); ?>

https://codex.wordpress.org/Glossary#Permalink
https://codex.wordpress.org/The_Loop

Prof. Harsh Joshi Page 73

Default Usage

 <?php single_post_title(); ?>

Parameters

$prefix
(string) (optional) Text to place before the title.
Default: None

$display
(boolean) (optional) Should the title be displayed (TRUE) or returned for use in PHP (FALSE).
Default: TRUE

Example

<h2><?php single_post_title('Current post: '); ?></h2>

wp_footer()

Description

Fire the 'wp_footer' action. Put this template tag immediately before </body> tag in a theme template (ex.
footer.php, index.php).

Usage

 <?php wp_footer(); ?>

Parameters

This function does not accept any parameters.

Examples

In twentyten theme

wp-content/themes/twentyten/footer.php:

...
<?php
 /* Always have wp_footer() just before the closing </body>
 * tag of your theme, or you will break many plugins, which
 * generally use this hook to reference JavaScript files.
 */
 wp_footer();
?>
</body>
</html>

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Boolean
https://codex.wordpress.org/Plugin_API/Action_Reference/wp_footer
https://codex.wordpress.org/Theme_Development#Template_Files
https://core.trac.wordpress.org/browser/tags/4.7.3/src/wp-content/themes/twentyten/footer.php#L0

Prof. Harsh Joshi Page 74

comments_template()

Description

The comments_template filter hook filters the path to the theme template file used for the comments
template. It is part of the comments_template() function.

The comments_template filter can be used to load a custom template form a plugin which replaces the
theme's default comment template.

Parameters

$theme_template
(string) (required) The path to the theme template file.
Default: None

Examples

A plugin can register as a content filter with the code:

<?php add_filter("comments_template", "my_plugin_comment_template"); ?>

Where my_plugin_comment_template is the function WordPress should call when the
comment_template() function is called on the theme. Note that the filter function the plugin defines must
return the a full path to a template file or the resulting page will be blank.

This is an example of loading a different comments template for a custom post type:

<?php
function my_plugin_comment_template($comment_template) {
 global $post;
 if (!(is_singular() && (have_comments() || 'open' == $post->comment_status))) {
 return;
 }
 if($post->post_type == 'business'){ // assuming there is a post type called business
 return dirname(__FILE__) . '/reviews.php';
 }
}

add_filter("comments_template", "my_plugin_comment_template");
?>

add_theme_support()

Description

Allows a theme or plugin to get support of a certain theme feature.

https://codex.wordpress.org/Function_Reference/comments_template
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/Theme_Features

Prof. Harsh Joshi Page 75

Usage

<?php get_theme_support($feature); ?>

Parameters

$feature
(string) (required) Name for the feature being added.
Default: None

Features list:

 Sidebar Widgets
 Navigation Menus
 Post Formats
 Post Thumbnails
 Custom Backgrounds
 Custom Headers
 Automatic Feed Links
 Editor Style

See Theme Features for more information.

Feature Means

See Function_Reference/add_theme_support for more.

Return

Returns either:

 array() - containing the arguments passed when support for the feature was registered via
add_theme_support($feature, $arguments); OR

 true (bool) - if support for the feature was added without arguments (add_theme_support(
$feature); OR

 false (bool) - if the feature is not supported by the current theme.

get_template_directory_uri()

Description

Retrieves the absolute path to the directory of the current theme.

Note: Does not contain a trailing slash.

Returns an absolute server path (eg: /home/user/public_html/wp-content/themes/my_theme), not a URI.

In the case a child theme is being used, the absolute path to the parent theme directory will be returned.
Use get_stylesheet_directory() to get the absolute path to the child theme directory.

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/Widgets_API
https://codex.wordpress.org/Navigation_Menus
https://codex.wordpress.org/Post_Formats
https://codex.wordpress.org/Post_Thumbnails
https://codex.wordpress.org/Custom_Backgrounds
https://codex.wordpress.org/Custom_Headers
https://codex.wordpress.org/Automatic_Feed_Links
https://codex.wordpress.org/Editor_Style
https://codex.wordpress.org/Theme_Features
https://codex.wordpress.org/Function_Reference/add_theme_support
https://codex.wordpress.org/Glossary#Theme
https://codex.wordpress.org/Function_Reference/get_stylesheet_directory

Prof. Harsh Joshi Page 76

To retrieve the URI of the stylesheet directory use get_stylesheet_directory_uri() instead.

Usage

<?php echo get_template_directory(); ?>

Parameters

This tag has no parameters.

Return Values

(string)
Absolute path to the directory of the current theme (without the trailing slash).

Examples

Include a PHP file

<?php include(get_template_directory() . '/includes/myfile.php'); ?>

body_class()

Description

The "body_class" filter is used to filter the classes that are assigned to the body HTML element on the
current page.

A plugin (or theme) can filter these classes with the code:

<?php add_filter('body_class', 'filter_function_name') ?>

Where 'filter_function_name' is the function WordPress should call when the classes are being assigned.
Note that the filter function must return the array of classes after it is finished processing, or all of the
classes will be cleared and could seriously impact the visual state of a user's site.

filter_function_name should be unique function name. It cannot match any other function name already
declared.

This filter is used by the get_body_class() function.

Examples

Classes in WordPress Multisite

This could be used to provide custom classes for applying different styles to specific sites in Multisite that
all use the same theme:

// Apply filter
add_filter('body_class', 'multisite_body_classes');

https://codex.wordpress.org/Function_Reference/get_stylesheet_directory_uri
https://codex.wordpress.org/Glossary#String
https://codex.wordpress.org/Function_Reference/get_body_class

Prof. Harsh Joshi Page 77

function multisite_body_classes($classes) {
 $id = get_current_blog_id();
 $slug = strtolower(str_replace(' ', '-', trim(get_bloginfo('name'))));
 $classes[] = $slug;
 $classes[] = 'site-id-'.$id;
 return $classes;
}

2. Author tags

the_author()

Description

The author of a post can be displayed by using this Template Tag. This tag must be used within The Loop.

To return to PHP rather than displaying, use get_the_author().

Usage

 <?php the_author(); ?>

Examples

Display Author's 'Public' Name

Displays the value in the user's Display name publicly as field.

<p>This post was written by <?php the_author(); ?></p>

get_the_author()

Description

Retrieve the post author's display name. This tag must be used within The Loop.

To get the post author's ID, use get_the_author_meta('ID').

To display a page for authors which have no posts, see this discussion.

Since WordPress 2.1 parameters are deprecated (not the function).

Usage

 <?php $author = get_the_author(); ?>

Parameters

$deprecated

https://codex.wordpress.org/Template_Tags
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Template_Tags/get_the_author
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Function_Reference/get_the_author_meta
http://wordpress.org/support/topic/author-page-with-no-posts#post-798266

Prof. Harsh Joshi Page 78

(string) (optional) Deprecated.
Default: ''

Returns

(string)
The author's display name.

Examples

Grab the Author's 'Public' Name

Grabs the value in the user's Display name publicly as field.

<?php $author = get_the_author(); ?>

the_author_link()

Description

This tag displays a link to the Website for the author of a post. The Website field is set in the user's profile
(Administration > Profile > Your Profile). The text for the link is the author's Profile Display name publicly as
field. This tag must be used within The Loop.

Usage

 <?php the_author_link(); ?>

Parameters

This function does not accept any parameters.

Example

Displays the author's Website URL as a link and the text for the link is the author's Profile Display name
publicly as field. In this example, the author's Display Name is James Smith.

<p>Written by:
<?php the_author_link(); ?></p>

get_the_author_link()

Description

This tag returns a link to the Website for the author of a post. The Website field is set in the user's profile
(Administration > Users > Your Profile). The text for the link is the author's Profile Display name publicly as
field. This tag must be used within The Loop.

get_the_author_link() returns the link for use in PHP. To display the link instead, use the_author_link().

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/Administration_Panels
https://codex.wordpress.org/Administration_Panels#Your_Profile
https://codex.wordpress.org/Your_Profile_SubPanel
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Administration_Panels
https://codex.wordpress.org/Administration_Panels#Users
https://codex.wordpress.org/Your_Profile_SubPanel
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Function_Reference/the_author_link

Prof. Harsh Joshi Page 79

Usage

 <?php get_the_author_link(); ?>

Parameters

This tag does not accept any parameters.

Example

The example echos (displays) the author's Website URL as a link and the text for the link is the author's
Profile Display name publicly as field. In this example, the author's Display Name is James Smith.

<p>Written by:
<?php echo get_the_author_link(); ?></p>

the_author_meta()

Description

The the_author_meta Template Tag displays a desired meta data field for a user. Only one field is returned
at a time, you need to specify which you want.

If this tag is used within The Loop, the user ID value need not be specified, and the displayed data is that of
the current post author. A user ID can be specified if this tag is used outside The Loop.

If the meta field does not exist, nothing is printed.

NOTE: Use get_the_author_meta() if you need to return (and do something with) the field, rather than just
display it.

Usage

 <?php the_author_meta($field, $userID); ?>

Parameters

$field
(string) Field name for the data item to be displayed. Valid values:

 user_login
 user_pass
 user_nicename
 user_email
 user_url
 user_registered
 user_activation_key
 user_status
 display_name
 nickname

https://codex.wordpress.org/Template_Tags/the_author_meta
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/The_Loop

Prof. Harsh Joshi Page 80

 first_name
 last_name
 description
 jabber
 aim
 yim
 user_level
 user_firstname
 user_lastname
 user_description
 rich_editing
 comment_shortcuts
 admin_color
 plugins_per_page
 plugins_last_view
 ID

$userID
(integer) (optional) If the user ID fields is used, then this function display the specific field for this
user ID.
Default: false

Examples

Display the Author's AIM screenname

Displays the value in the author's AIM (AOL Instant Messenger screenname) field.

<p>This author's AIM address is <?php the_author_meta('aim'); ?></p>

Display a User Email Address

Displays the email address for user ID 25.

<p>The email address for user id 25 is <?php the_author_meta('user_email',25); ?></p>

Advanced Uses

A plugin may add an additional field in the registration or manage users, which adds a new value in the
wp_usermeta table (where wp_ is your data base prefix). For this example we will use a Twitter ID. For a
meta_key value of "twitter" and meta_value of "WordPress" then

<p>This author's Twitter name is <?php the_author_meta('twitter'); ?></p>

the_author_posts()

Description

Displays the total number of posts an author has published. Drafts and private posts aren't counted. This
tag must be used within The Loop.

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Integer
https://codex.wordpress.org/The_Loop

Prof. Harsh Joshi Page 81

Usage

 <?php the_author_posts(); ?>

Example

Displays the author's name and number of posts.

<p><?php the_author(); ?> has blogged <?php the_author_posts(); ?>
posts</p>

3. Category tags

category_description()

Description

Returns the description of a category defined in the category settings screen for the current category
(Posts > Categories).

If used in the archive.php template, place this function within the is_category() conditional statement.
Otherwise, this function will stop the processing of the page for monthly and other archive pages.

Usage

 <?php echo category_description($category_id); ?>

Parameters

$category_id
(integer) (optional) The ID of the category to return a description.
Default: Description of current query category.

Example

Default Usage

Displays the description of a category, given its id, by echoing the return value of the tag. If no category
given and used on a category page, it returns the description of the current category.

 <div><?php echo category_description(3); ?></div>

single_cat_title()

Description

Retrieve the name of a category from its ID.

Usage

<?php get_cat_name($cat_id) ?>

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Integer

Prof. Harsh Joshi Page 82

Parameters

$cat_id
(integer) (required) Category ID
Default: None

Return Values

(string)
Category name

Examples

<?php echo get_cat_name(4);?>

returns the name for the category with the id '4'.

the_category()

Description

Displays a link to the category or categories a post belongs to. This tag must be used within The Loop.

Usage

 <?php the_category($separator, $parents, $post_id); ?>

Parameters

$separator
(string) (optional) Text or character to display between each category link. By default, the links are
placed in an HTML unordered list. An empty string will result in the default behavior.
Default: empty string

$parents
(string) (optional) How to display links that reside in child (sub) categories. Options are:
 ▪ 'multiple' - Display separate links to parent and child categories, exhibiting "parent/child"
relationship.
 ▪ 'single' - Display link to child category only, with link text exhibiting "parent/child" relationship.
Default: empty string
Note: Default is a link to the child category, with no relationship exhibited.

$post_id
(int) (optional) Post ID to retrieve categories. The default value false results in the category list of
the current post.
Default: false

Examples

Separated by Space

List categories with a space as the separator. <?php the_category(' '); ?>

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Integer
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Int

Prof. Harsh Joshi Page 83

Separated by Comma

Displays links to categories, each category separated by a comma (if more than one).
<?php the_category(', '); ?>

4. Link tags

the_permalink()

Description

Displays the URL for the permalink to the post currently being processed in The Loop. This tag must be
within The Loop, and is generally used to display the permalink for each post, when the posts are being
displayed. Since this template tag is limited to displaying the permalink for the post that is being
processed, you cannot use it to display the permalink to an arbitrary post on your weblog. Refer to
get_permalink() if you want to get the permalink for a post, given its unique post id.

Usage

 <?php the_permalink(); ?>

Parameters

Before 4.4.0, this tag has no parameters. Since 4.4.0: Added the `$post` parameter.

Examples

Display Post URL as Text

Displays the URL to the post, without creating a link:

This address for this post is: <?php the_permalink(); ?>

As Link With Text

You can use whatever text you like as the link text, in this case, "permalink".

<a href="<?php the_permalink(); ?>">permalink

Used as Link With Title Tag

Creates a link for the permalink, with the post's title as the link text. This is a common way to put the post's
title.

<a href="<?php the_permalink(); ?>" title="<?php the_title_attribute(); ?>"><?php the_title(); ?>

get_permalink()

https://codex.wordpress.org/Glossary#URI_and_URL
https://codex.wordpress.org/Glossary#Permalink
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Template_Tags/get_permalink

Prof. Harsh Joshi Page 84

Description

Displays the URL for the permalink to the post currently being processed in The Loop. This tag must be
within The Loop, and is generally used to display the permalink for each post, when the posts are being
displayed. Since this template tag is limited to displaying the permalink for the post that is being
processed, you cannot use it to display the permalink to an arbitrary post on your weblog. Refer to
get_permalink() if you want to get the permalink for a post, given its unique post id.

Usage

 <?php the_permalink(); ?>

Parameters

Before 4.4.0, this tag has no parameters. Since 4.4.0: Added the `$post` parameter.

Examples

Display Post URL as Text

Displays the URL to the post, without creating a link:

This address for this post is: <?php the_permalink(); ?>

As Link With Text

You can use whatever text you like as the link text, in this case, "permalink".

<a href="<?php the_permalink(); ?>">permalink

Used as Link With Title Tag

Creates a link for the permalink, with the post's title as the link text. This is a common way to put the post's
title.

<a href="<?php the_permalink(); ?>" title="<?php the_title_attribute(); ?>"><?php the_title(); ?>

home_url()

Description

The home_url template tag retrieves the home URL for the current site, optionally with the $path
argument appended. The function determines the appropriate protocol, "https" if is_ssl() and "http"
otherwise. If the $scheme argument is "http" or "https" the is_ssl() check is overridden.

In case of WordPress Network Setup, use network_home_url() instead.

Usage

<?php home_url($path, $scheme); ?>

https://codex.wordpress.org/Glossary#URI_and_URL
https://codex.wordpress.org/Glossary#Permalink
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Template_Tags/get_permalink
https://codex.wordpress.org/Function_Reference/is_ssl
https://codex.wordpress.org/Create_A_Network
https://codex.wordpress.org/Function_Reference/network_home_url

Prof. Harsh Joshi Page 85

Default Usage

<?php echo esc_url(home_url('/')); ?>

Parameters

$path
(string) (optional) Path relative to the home URL.
Default: None

$scheme
(string) (optional) Scheme to use for the home URL. Currently, only "http", "https" and "relative"
are supported.
Default: null

Return

(string)
Home URL with the optional $path argument appended.

Example

$url = home_url();
echo esc_url($url);

Output: http://www.example.com

get_home_url()

Description

The home_url template tag retrieves the home URL for the current site, optionally with the $path
argument appended. The function determines the appropriate protocol, "https" if is_ssl() and "http"
otherwise. If the $scheme argument is "http" or "https" the is_ssl() check is overridden.

In case of WordPress Network Setup, use network_home_url() instead.

Usage

<?php home_url($path, $scheme); ?>

Default Usage

<?php echo esc_url(home_url('/')); ?>

Parameters

$path
(string) (optional) Path relative to the home URL.
Default: None

$scheme
(string) (optional) Scheme to use for the home URL. Currently, only "http", "https" and "relative"
are supported.
Default: null

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
http://www.example.com/
https://codex.wordpress.org/Function_Reference/is_ssl
https://codex.wordpress.org/Create_A_Network
https://codex.wordpress.org/Function_Reference/network_home_url
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String

Prof. Harsh Joshi Page 86

Return

(string)
Home URL with the optional $path argument appended.

Example

$url = home_url();
echo esc_url($url);

Output: http://www.example.com

site_url()

Description

The site_url template tag retrieves the site url for the current site (where the WordPress core files reside)
with the appropriate protocol, 'https' if is_ssl() and 'http' otherwise. If scheme is 'http' or 'https', is_ssl() is
overridden. Use this to get the "WordPress address" as defined in general settings. Use home_url() to get
the "site address" as defined in general settings.

In case of WordPress Network setup, use network_site_url() instead.

Usage

<?php site_url($path, $scheme); ?>

Default Usage

<?php echo site_url(); ?>

Parameters

$path
(string) (optional) Path to be appended to the site url.
Default: None

$scheme
(string) (optional) Context for the protocol for the url returned. Setting $scheme will override the
default context. Allowed values are 'http', 'https', 'login', 'login_post', 'admin', or 'relative'.
Default: null

Return

(string)
Site url link with optional path appended.

Examples

$url = site_url();
echo $url;

get_site_url()

http://www.example.com/
https://codex.wordpress.org/Function_Reference/is_ssl
https://codex.wordpress.org/Function_Reference/site_url#Parameters
https://codex.wordpress.org/Function_Reference/home_url
https://codex.wordpress.org/Function_Reference/network_site_url
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String

Prof. Harsh Joshi Page 87

Description

The site_url template tag retrieves the site url for the current site (where the WordPress core files reside)
with the appropriate protocol, 'https' if is_ssl() and 'http' otherwise. If scheme is 'http' or 'https', is_ssl() is
overridden. Use this to get the "WordPress address" as defined in general settings. Use home_url() to get
the "site address" as defined in general settings.

In case of WordPress Network setup, use network_site_url() instead.

Usage

<?php site_url($path, $scheme); ?>

Default Usage

<?php echo site_url(); ?>

Parameters

$path
(string) (optional) Path to be appended to the site url.
Default: None

$scheme
(string) (optional) Context for the protocol for the url returned. Setting $scheme will override the
default context. Allowed values are 'http', 'https', 'login', 'login_post', 'admin', or 'relative'.

Default: null

Return

(string)
Site url link with optional path appended.

Examples

$url = site_url();
echo $url;

5. Post tags

the_content()

Description

The "the_content" filter is used to filter the content of the post after it is retrieved from the database and
before it is printed to the screen.

A plugin (or theme) can register as a content filter with the code:

<?php add_filter('the_content', 'filter_function_name') ?>

https://codex.wordpress.org/Function_Reference/is_ssl
https://codex.wordpress.org/Function_Reference/site_url#Parameters
https://codex.wordpress.org/Function_Reference/home_url
https://codex.wordpress.org/Function_Reference/network_site_url
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String

Prof. Harsh Joshi Page 88

Where 'filter_function_name' is the function WordPress should call when the content is being retrieved.
Note that the filter function must return the content after it is finished processing, or site visitors will see a
blank page and other plugins also filtering the content may generate errors.

filter_function_name should be unique function name. It cannot match any other function name already
declared.

Examples

Debug Page

This could be used to provide generated content for a page (as an alternative to the Shortcode_API), or for
a set of pages sharing some characteristics (e.g. the same author):

// returns the content of $GLOBALS['post']
// if the page is called 'debug'
function my_the_content_filter($content) {
 // assuming you have created a page/post entitled 'debug'
 if ($GLOBALS['post']->post_name == 'debug') {
 return var_export($GLOBALS['post'], TRUE);
 }
 // otherwise returns the database content
 return $content;
}

add_filter('the_content', 'my_the_content_filter');

the_ID()

Description

Displays the numeric ID of the current post. This tag must be within The Loop.

Note: This function displays the ID of the post, to return the ID use get_the_ID().

Usage

 <?php the_ID(); ?>

Parameters

This tag has no parameters.

Examples

Default Usage

<p>Post Number: <?php the_ID(); ?></p>

https://codex.wordpress.org/Shortcode_API
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Function_Reference/get_the_ID

Prof. Harsh Joshi Page 89

Post Anchor Identifier

Provides a unique anchor identifier to each post:

<h3 id="post-<?php the_ID(); ?>"><?php the_title(); ?></h3>

the_tags()

Description

This template tag displays a link to the tag or tags a post belongs to. If no tags are associated with the
current entry, nothing is displayed. This tag should be used within The Loop.

Usage

 <?php the_tags($before, $sep, $after); ?>

Parameters

$before
(string) Text to display before the actual tags are displayed. Defaults to Tags:

$sep
(string) Text or character to display between each tag link. The default is a comma (,) between each
tag.

$after
(string) Text to display after the last tag. The default is to display nothing.

Return Values

None.

Examples

Default Usage

The default usage lists tags with each tag (if more than one) separated by a comma (,) and preceded with
the default text Tags: .

<p><?php the_tags(); ?></p>

Separated by Commas

Displays a list of the tags with a line break after it.

 <?php the_tags('Tags: ', ', ', '
'); ?>

https://codex.wordpress.org/The_Loop

Prof. Harsh Joshi Page 90

the_title()

Description

Displays or returns the title of the current post. This tag may only be used within The Loop, to get the title
of a post outside of the loop use get_the_title. If the post is protected or private, this will be noted by the
words "Protected: " or "Private: " prepended to the title.

Usage

 <?php the_title($before, $after, $echo); ?>

Parameters

$before
(string) (optional) Text to place before the title.
Default: None

$after
(string) (optional) Text to place after the title.
Default: None

$echo
(Boolean) (optional) Display the title (TRUE) or return it for use in PHP (FALSE).
Default: TRUE

Example

<?php the_title('<h3>', '</h3>'); ?>

get_the_title()

Description

Displays or returns the title of the current post. This tag may only be used within The Loop, to get the title
of a post outside of the loop use get_the_title. If the post is protected or private, this will be noted by the
words "Protected: " or "Private: " prepended to the title.

Usage

 <?php the_title($before, $after, $echo); ?>

Parameters

$before
(string) (optional) Text to place before the title.
Default: None

$after
(string) (optional) Text to place after the title.
Default: None

$echo
(Boolean) (optional) Display the title (TRUE) or return it for use in PHP (FALSE).
Default: TRUE

https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Function_Reference/get_the_title
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Boolean
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Function_Reference/get_the_title
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Boolean

Prof. Harsh Joshi Page 91

Example

<?php the_title('<h3>', '</h3>'); ?>

the_date()

Description

Displays or returns the date of a post, or a set of posts if published on the same day.

Usage

 <?php the_date($format, $before, $after, $echo); ?>

Parameters

$format
(string) (optional) The format for the date. Defaults to the date format configured in your
WordPress options. See Formatting Date and Time.
Default: F j, Y

$before
(string) (optional) Text to place before the date.
Default: None

$after
(string) (optional) Text to place after the date
Default: None

$echo
(boolean) (optional) Display the date (TRUE), or return the date to be used in PHP (FALSE).
Default: TRUE

Return

(string|null) Null if displaying, string if retrieving.

Examples

Default Usage

Displays the date using defaults.

<?php the_date(); ?>

Date as Year, Month, Date in Heading

Displays the date using the '2007-07-23' format (ex: 2004-11-30), inside an <h2> tag.

<?php the_date('Y-m-d', '<h2>', '</h2>'); ?>

Date in Heading Using $my_date Variable

Returns the date in the default format inside an <h2> tag and assigns it to the $my_date variable. The
variable's value is then displayed with the PHP echo command.

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/Formatting_Date_and_Time
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Boolean

Prof. Harsh Joshi Page 92

<?php $my_date = the_date('', '<h2>', '</h2>', FALSE); echo $my_date; ?>

get_the_date()

Description

The get_the_date template tag retrieves the date the current $post was written. Unlike the_date() this tag
will always return the date. Modify output with 'get_the_date' filter.

Usage

<?php $pfx_date = get_the_date($format, $post_id); ?>

Parameters

$format
(string) (optional) PHP date format.
Default: the date_format option ('Date Format' on Settings > General panel)

$post
(integer) (optional) The ID of the post you'd like to fetch. By default the current post is fetched.
Default: null

Return

(string) The formatted date string

Filter

 apply_filters('get_the_date', $the_date, $format)

Changelog

 3.0.0 : New template tag.

Examples

Default Usage

<?php echo get_the_date(); ?>

the_time()

Description

Displays the time of the current post. To return the time of a post, use get_the_time(). This tag must be
used within The Loop.

Usage

 <?php the_time($d); ?>

https://codex.wordpress.org/Template_Tags/the_date
https://codex.wordpress.org/Plugin_API/Filter_Reference/get_the_date
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/Formatting_Date_and_Time
https://codex.wordpress.org/Option_Reference#General
https://codex.wordpress.org/Administration_Panels#Settings
https://codex.wordpress.org/Settings_General_SubPanel
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Integer
https://codex.wordpress.org/Function_Reference/apply_filters
https://codex.wordpress.org/Version_3.0
https://codex.wordpress.org/Template_Tags/get_the_time
https://codex.wordpress.org/The_Loop

Prof. Harsh Joshi Page 93

Parameters

$d
(string) (optional) The format the time is to display in. Defaults to the time format configured in
your WordPress options. See Formatting Date and Time.
Default: None

Examples

Default Usage

Displays the time using your WordPress defaults.

<p>Time posted: <?php the_time(); ?></p>

Time as AM/PM VS. 24H format

Displays the time using the format parameter string 'g:i a' (ex: 10:36 pm).

<p>Time posted: <?php the_time('g:i a'); ?></p>

Displays the time using the 24 hours format parameter string 'G:i' (ex: 17:52).

<p>Time posted: <?php the_time('G:i'); ?></p>

Date as Month Day, Year

Displays the time in the date format 'F j, Y' (ex: December 2, 2004), which could be used to replace the tag
the_date().

<div><?php the_time('F j, Y'); ?></div>

Date and Time

Displays the date and time.

<p>Posted: <?php the_date('F j, Y'); ?> at <?php the_time('g:i a'); ?></p>

next_post_link()

Description

Used on single post permalink pages, this template tag displays a link to the next post which exists in
chronological order from the current post.

In standard usage (within the default, unaltered loop) next_post_link will generate a link to a post that is
newer (more recent) than the current post. This is in contrary to the similarly-named previous_posts_link,
which will typically link to a page of posts that is older than the current batch.

This tag must be used in The Loop.

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/Formatting_Date_and_Time
https://codex.wordpress.org/Template_Tags/the_date
https://codex.wordpress.org/Glossary#Permalink
https://codex.wordpress.org/The_Loop

Prof. Harsh Joshi Page 94

Usage

<?php next_post_link($format, $link, $in_same_term = false, $excluded_terms = '', $taxonomy =
'category'); ?>

Parameters

format
(string) (Optional) Format string for the link. This is where to control what comes before and after
the link. '%link' in string will be replaced with whatever is declared as 'link' (see next parameter).
'Go to %link' will generate "Go to <a href=..." Put HTML tags here to style the final results.
Default: '%link »'

link
(string) (Optional) Link text to display.
Default: '%title' (next post's title)

in_same_term
(boolean) (optional) Indicates whether next post must be within the same taxonomy term as the
current post. If set to 'true', only posts from the current taxonomy term will be displayed. If the
post is in both the parent and subcategory, or more than one term, the next post link will lead to
the next post in any of those terms.

 true
 false

Default: false
excluded_terms

(string/array) (optional) Array or a comma-separated list of numeric terms IDs from which the next
post should not be listed. For example array(1, 5) or '1,5'. This argument used to accept a list of IDs
separated by 'and', this was deprecated in WordPress 3.3
Default: None

taxonomy
(string) (Optional) Taxonomy, if $in_same_term is true. Added in WordPress 3.8.
Default: 'category'

Examples

Default Usage

Displays link with the post title of the next post (chronological post date order), followed by a right angular
quote (»).

Next Post Title »
<?php next_post_link(); ?>

previous_post_link()

Description

Used on single post permalink pages, this template tag displays a link to the previous post which exists in
chronological order from the current post.

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Boolean
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String.2Farray
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/Function_Reference/next_post_link#Examples
https://codex.wordpress.org/Glossary#Permalink

Prof. Harsh Joshi Page 95

This tag must be used in The Loop.

Arguments

<?php previous_post_link($format, $link, $in_same_term = false, $excluded_terms = '', $taxonomy =
'category'); ?>

Parameters

format
(string) (Optional) Format string for the link. This is where to control what comes before and after
the link. '%link' in string will be replaced with whatever is declared as 'link' (see next parameter).
'Go to %link' will generate "Go to <a href=..." Put HTML tags here to style the final results.
Default: '« %link'

link
(string) (Optional) Link text to display.
Default: '%title' (previous post's title)

in_same_term
(boolean) (optional) Indicates whether previous post must be within the same taxonomy term as
the current post. If set to 'true', only posts from the current taxonomy term will be displayed. If the
post is in both the parent and subcategory, or more than one term, the previous post link will lead
to the previous post in any of those terms.

 true
 false

Default: false
excluded_terms

(string/array) (optional) Array or a comma-separated list of numeric terms IDs from which the next
post should not be listed. For example array(1, 5) or '1,5'. This argument used to accept a list of IDs
separated by 'and', this was deprecated in WordPress 3.3
Default: None

taxonomy
(string) (Optional) Taxonomy, if $in_same_term is true. Added in WordPress 3.8.
Default: 'category'

Examples

Default Usage

Displays link with left angular quote («) followed by the post title of the previous post (chronological post
date order).

« Previous Post Title

 <?php previous_post_link(); ?>

https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Boolean
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String.2Farray
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/Function_Reference/previous_post_link#Examples

Prof. Harsh Joshi Page 96

posts_nav_link()

Description

Displays links for next and previous pages. Useful for providing "paged" navigation of index, category and
archive pages.

For displaying next and previous pages of posts see next_posts_link() and previous_posts_link().

For displaying next and previous post navigation on individual posts, see next_post_link() and
previous_post_link().

Usage

 <?php posts_nav_link($sep, $prelabel, $nextlabel); ?>

Note: since weblog posts are traditionally listed in reverse chronological order (with most recent posts at
the top), there is some ambiguity in the definition of "next page". WordPress defines "next page" as the
"next page toward the past". In WordPress 1.5, the default Kubrick theme addresses this ambiguity by
labeling the "next page" link as "previous entries". See Example: Kubrick Theme Format.

Parameters

$sep
(string) Text displayed between the links.

 Defaults to ' :: ' in 1.2.x.
 Defaults to ' — ' in 1.5.

$prelabel
(string) Link text for the previous page.

 Defaults to '<< Previous Page' in 1.2.x.
 Defaults to '« Previous Page' in 1.5.

$nxtlabel
(string) Link text for the next page.

 Defaults to 'Next Page >>' in 1.2.x.
 Defaults to 'Next Page »' in 1.5

Examples

Default Usage

By default, the posts_nav_link() look like this:

« Previous Page — Next Page »
<?php posts_nav_link(); ?>

https://codex.wordpress.org/Function_Reference/next_posts_link
https://codex.wordpress.org/Function_Reference/previous_posts_link
https://codex.wordpress.org/Template_Tags/next_post_link
https://codex.wordpress.org/Template_Tags/previous_post_link
http://binarybonsai.com/kubrick
https://codex.wordpress.org/Function_Reference/posts_nav_link#Kubrick_Theme_Format
https://codex.wordpress.org/Function_Reference/posts_nav_link#Examples
https://codex.wordpress.org/Function_Reference/posts_nav_link#Examples

Prof. Harsh Joshi Page 97

post_class()

Description

WordPress theme authors who want to have finer css control options for their post styling, have the
post_class function available. When the post_class function is added to a tag within the loop, for example
<div <?php post_class(); ?> >, it will print out and add various post-related classes to the div tag. It can also
be used outside the loop with the optional post_id parameter. This function is typically used in the
index.php, single.php, and other template files that feature hierarchical post listings.

If you would prefer to have the post classes returned instead of echoed, you would want to use
get_post_class(). Note: get_post_class() does not return a string, but an array that must be processed to
produce text similar to what is echoed by post_class().

For css classes intended to help target entire pages, see body_class(), and for classes targeting comment
listings, see comment_class().

Usage

<div id="post-<?php the_ID(); ?>" <?php post_class(); ?>>

The post_class may include one or more of the following values for the class attribute, dependent upon the
pageview.

 .post-[id]
 .[post-type]
 .type-[post-type]
 .status-[post-status]
 .format-[post-format] (default to 'standard')
 .post-password-required
 .post-password-protected
 .has-post-thumbnail
 .sticky
 .hentry (hAtom microformat pages)
 .[taxonomy]-[taxonomy-slug] (includes category)
 .tag-[tag-name]

Default Values

The post_class CSS classes appear based upon the post pageview Conditional Tags as follows.

Front Page
If posts are found on the front page of the blog, be it static or not, the class selectors are: post post-id
hentry

Single Post
Single post template files and pageviews feature the class selectors: post post-id hentry

Sticky Post
Posts designated as "sticky," sticking to the front page of the blog, feature the class selector: sticky

https://codex.wordpress.org/Function_Reference/get_post_class
https://codex.wordpress.org/Function_Reference/get_post_class
https://codex.wordpress.org/Function_Reference/body_class
https://codex.wordpress.org/Function_Reference/comment_class
https://codex.wordpress.org/Conditional_Tags

Prof. Harsh Joshi Page 98

Author
Author template files and pageviews displaying posts feature the class selectors: post post-id

Category
Category template files and pageviews displaying posts feature the class selectors: post post-id category-ID
category-name

Tags
Tag template files and pageviews with posts feature the class selectors: tag-name post post-id

Archives
Archive pageviews and pageviews with posts feature CSS classes: post post-id

Search
Search template files and pageviews with posts feature the class selectors: post post-id

Attachment
Attachment template files and pageviews feature the class selectors: attachment post post-id

Format
Posts using Post Formats feature the class selector: format-name

Parameters

How to pass parameters to tags with PHP function-style parameters

class
(string or array) (optional) One or more classes to add to the class attribute, separated by a single
space.
Default: null

$post_id
(int) (optional) An optional post ID, used when calling this function from outside The Loop
Default: null

Examples

Implementation

The following example shows how to implement the post_class template tag into a theme.

<div id="post-<?php the_ID(); ?>" <?php post_class(); ?>>

The actual HTML output might resemble something like this for a post in the "dancing" category:

<div id="post-4564" class="post post-4564 category-48 category-dancing logged-in">

In the WordPress Theme stylesheet, add the appropriate styles, such as:

https://codex.wordpress.org/Template_Tags/How_to_Pass_Tag_Parameters#Tags_with_PHP_function-style_parameters
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String_or_array
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Int

Prof. Harsh Joshi Page 99

.post {
 /* styles for all posts */
}
.post-4564 {
 /* styles for only post ID number 4564 */
}
.category-dancing {
 /* styles for all posts within the category of dancing */
}

Prof. Harsh Joshi Page 100

UNIT 5
Advanced development

Advanced functions

add_action()

Description
Hooks a function to a specific action (removes the function execution from a special location or prevents it
from being executed).
Action hook list: Plugin API / Action Reference Action is usually executed by do_action () .
Usage
<?php add_action ($tag , $function_to_add , $priority , $accepted_args); ?>
Parameters
$ Tag
(String) (required) Name of hook to connect (Action hook list: Plugin API / Action Reference).
Alternatively, you can include actions included in a theme or plugin.
Default: None
$ Function_to_add
(Callback) (required) The name of the function to call. Note: Only string-formatted syntaxes are listed in
the PHP documentation for the 'callback' type .
Default: None
$ Priority
(Int) (optional) The importance of the function to be called. Change this value to be called before or after
another function. The default value is 10, for example, set to 5, and set to 12 to run later.
Default: 10
$ Accepted_args
(Int) (optional) How many arguments your function takes. In WordPress 1.5.1+, hooked functions can
take extra arguments that do not match the do_action () or apply_filters () call is run. For example, the
action comment_id_not_found will pass any functions that hook onto it.
Default: 1
Examples
Simple Hook
An example of sending an email to a friend every time they post a blog:
 Function email_friends ($ post_ID)
 {
 $ Friends = 'bob@example.org, susie@example.org';
 Wp_mail ($ friends, "sally's blog updated", "I just put something on my blog: http://blog.example.com");

 Return $ post_ID;
 }
 Add_action ('publish_post', 'email_friends');
Take Arguments
The hooked function takes one argument from the action. Specifically, the 'echo_comment_id' function
takes the argument $comment_ID . It then echos the value of the received argument.
 Function echo_comment_id ($ comment_ID)
 {
 Echo "I just received $ comment_ID";

https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/Plugin_API&usg=ALkJrhhQn0B083JxKIJbUJRRBDigQo6gGw#Actions
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/Plugin_API&usg=ALkJrhhQn0B083JxKIJbUJRRBDigQo6gGw#Actions
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/Plugin_API/Action_Reference&usg=ALkJrhgTdUPcZ9y2PGi3tYnOLcGBSkmfWg
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/Function_Reference/do_action&usg=ALkJrhhfflM7nup-aoQujByWm_VVPjnEOg
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/How_to_Pass_Tag_Parameters&usg=ALkJrhg4aU_SnJVcy6F7P0dOHPTssvlG1g#String
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/Plugin_API/Action_Reference&usg=ALkJrhgTdUPcZ9y2PGi3tYnOLcGBSkmfWg
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/How_to_Pass_Tag_Parameters&usg=ALkJrhg4aU_SnJVcy6F7P0dOHPTssvlG1g#Callback
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=http://us2.php.net/manual/en/language.pseudo-types.php&usg=ALkJrhjz_6kfZ-1Slu2YmDgGU08UYJSuiA#language.types.callback
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/How_to_Pass_Tag_Parameters&usg=ALkJrhg4aU_SnJVcy6F7P0dOHPTssvlG1g#Int
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/How_to_Pass_Tag_Parameters&usg=ALkJrhg4aU_SnJVcy6F7P0dOHPTssvlG1g#Int
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/Function_Reference/do_action&usg=ALkJrhhfflM7nup-aoQujByWm_VVPjnEOg
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=ko&sp=nmt4&u=https://codex.wordpress.org/Function_Reference/apply_filters&usg=ALkJrhjp-08PaD-5hNb8anrDqWla_ZWVSg

Prof. Harsh Joshi Page 101

 }
 Add_action ('comment_id_not_found', 'echo_comment_id', 10, 1);

add_filter()
Description
The "the_content" filter is used to filter the content of the post after it is retrieved from the database and
before it is printed to the screen.
A plugin (or theme) can register as a content filter with the code:
<?php add_filter('the_content', 'filter_function_name') ?>
Where 'filter_function_name' is the function WordPress should call when the content is being retrieved.
Note that the filter function must return the content after it is finished processing, or site visitors will see a
blank page and other plugins also filtering the content may generate errors.
filter_function_name should be unique function name. It cannot match any other function name already
declared.
Examples
Debug Page
This could be used to provide generated content for a page (as an alternative to the Shortcode_API), or for
a set of pages sharing some characteristics (e.g. the same author):
// returns the content of $GLOBALS['post']
// if the page is called 'debug'
function my_the_content_filter($content) {
 // assuming you have created a page/post entitled 'debug'
 if ($GLOBALS['post']->post_name == 'debug') {
 return var_export($GLOBALS['post'], TRUE);
 }
 // otherwise returns the database content
 return $content;
}

add_filter('the_content', 'my_the_content_filter');
Post Icon
This filter function adds an image before the post on the post page (see is_single()). It assumes an image
named post_icon.png exists in the theme images folder. It runs at a lower priority (20) which runs later
than most other filters (default is 10).
add_filter('the_content', 'my_the_content_filter', 20);
/**
 * Add a icon to the beginning of every post page.
 *
 * @uses is_single()
 */
function my_the_content_filter($content) {

 if (is_single())
 // Add image to the beginning of each page
 $content = sprintf(
 '%s',
 get_bloginfo('stylesheet_directory'),
 $content
);

https://codex.wordpress.org/Shortcode_API
http://codex.wordpress.org/Function_Reference/is_single

Prof. Harsh Joshi Page 102

 // Returns the content.
 return $content;
}
Featured Image
Adds a featured image set from the single post Edit screen which displays before the content on single
posts only.
 add_filter('the_content', 'featured_image_before_content');

 function featured_image_before_content($content) {
 if (is_singular('post') && has_post_thumbnail()) {
 $thumbnail = get_the_post_thumbnail();
 $content = $thumbnail . $content;} }
 return $content;
}

add_shortcode()
Description
Adds a hook for a shortcode tag.
Usage
<?php add_shortcode($tag , $func); ?>
Parameters
$tag

(string) (required) Shortcode tag to be searched in post content
Default: None
$func
(callable) (required) Hook to run when shortcode is found
Default: None
Return Values
(none)
Examples
Simplest example of a shortcode tag using the API: [footag foo="bar"]
function footag_func($atts) {
 return "foo = {$atts['foo']}";
}
add_shortcode('footag', 'footag_func');
Example with nice attribute defaults: [bartag foo="bar"]
function bartag_func($atts) {
 $atts = shortcode_atts(array(
 'foo' => 'no foo',
 'baz' => 'default baz'
), $atts, 'bartag');

 return "foo = {$atts['foo']}";
}
add_shortcode('bartag', 'bartag_func');

https://codex.wordpress.org/Shortcode_API
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Callable

Prof. Harsh Joshi Page 103

do_shortcode()
Description
Search the shortcode content and filter them through their hooks.
use
<?php echo do_shortcode ($content) ?>
Parameters
$ content
(String) (required) Content to search shortcodes
Default: None
Values returned
(String)
Content with shortcode replaced by output from the functions that manage them.
Examples
 Add_filter ('the_content', 'do_shortcode', 11); // from shortcodes.php
 // Use a shortcode in a PHP file (outside the content editor).
 Echo do_shortcode ('[gallery]');

 // In case there was an opening shortcode and one of the closure.
 Echo do_shortcode ('[iscorrect]'. $ Testo_da_include_nello_shortcode. '[/ Iscorrect]');
 // Use shortcuts in text widgets.
 Add_filter ('widget_text', 'do_shortcode');
 // Example of a shortcode that creates a module
 Echo do_shortcode ('[contact-form-7 id = "91" title = "quote"]');

register_nav_menu()
Description
Registers a single custom Navigation Menu in the custom menu editor (in WordPress 3.0 and above). This
allows administration users to create custom menus for use in a theme.
See register_nav_menus() for creating multiple menus at once.
Usage
 <?php register_nav_menu($location, $description); ?>
Parameters
$location
(string) (required) Menu location identifier, like a slug.
Default: None
$description
(string) (required) Menu description - for identifying the menu in the dashboard.
Default: None
Return Values
None.
Examples
<?php
add_action('after_setup_theme', 'register_my_menu');
function register_my_menu() {
 register_nav_menu('primary', __('Primary Menu', 'theme-slug'));
}
?>

https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=it&sp=nmt4&u=https://codex.wordpress.org/it:Le_API_degli_Shortcode&usg=ALkJrhjwmrdER8ZItKAy93uwCyqu3VEwNg
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=it&sp=nmt4&u=https://codex.wordpress.org/it:Come_passare_i_parametri&usg=ALkJrhgZ412696Nbo7AZO99ziL8pEzNPUw#String
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.co.in&sl=it&sp=nmt4&u=https://codex.wordpress.org/it:Glossario&usg=ALkJrhgU_mniBwjxU7sqq1jAzAz0Ybxt6Q#String
https://codex.wordpress.org/index.php?title=Navigation_Menu&action=edit&redlink=1
https://codex.wordpress.org/Function_Reference/register_nav_menus
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String

Prof. Harsh Joshi Page 104

Custom Post Types

register_post_type()
Description
Create or modify a post type. register_post_type should only be invoked through the 'init' action. It will not
work if called before 'init', and aspects of the newly created or modified post type will work incorrectly if
called later.
Note: You can use this function in themes and plugins. However, if you use it in a theme, your post type
will disappear from the admin if a user switches away from your theme.
Taxonomies
When registering a post type, always register your taxonomies using the taxonomies argument. If you do
not, the taxonomies and post type will not be recognized as connected when using filters such as
parse_query or pre_get_posts. This can lead to unexpected results and failures.
Even if you register a taxonomy while creating the post type, you must still explicitly register and define the
taxonomy using register_taxonomy().
Reserved Post Types
The following post types are reserved and used by WordPress already.

 post
 page
 attachment
 revision
 nav_menu_item
 custom_css
 customize_changeset

In addition, the following post types should not be used as they interfere with other WordPress functions.
 action
 author
 order
 theme

In general, you should always prefix your post types, or specify a custom `query_var`, to avoid conflicting
with existing WordPress query variables.
More information: Post Types.
Usage
<?php register_post_type($post_type, $args); ?>
Parameters
$post_type
(string) (required) Post type. (max. 20 characters, cannot contain capital letters or spaces)
Default: None
$args
(array) (optional) An array of arguments.
Default: None

register_taxonomy()
Description
This function adds or overwrites a taxonomy. It takes in a name, an object name that it affects, and an
array of parameters. It does not return anything.
Care should be used in selecting a taxonomy name so that it does not conflict with other taxonomies, post

https://codex.wordpress.org/Glossary#Post_Type
https://codex.wordpress.org/Plugin_API/Action_Reference/init
https://codex.wordpress.org/Function_Reference/register_taxonomy
https://codex.wordpress.org/Post_Types
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Array
https://codex.wordpress.org/Taxonomies

Prof. Harsh Joshi Page 105

 types, and reserved WordPress public and private query variables. A complete list of those is described in
the Reserved Terms section. In particular, capital letters should be avoided (This was allowed in 3.0, but
not enforced until 3.1 with the "Cheatin'" error).
Usage
 <?php register_taxonomy($taxonomy, $object_type, $args); ?>
Use the init action to call this function. Calling it outside of an action can lead to troubles. See #15568 for
details.
Better be safe than sorry when registering custom taxonomies for custom post types. Use
register_taxonomy_for_object_type() right after the function to interconnect them. Else you could run into
minetraps where the post type isn't attached inside filter callback that run during parse_request or
pre_get_posts.
Parameters
$taxonomy
(string) (required) The name of the taxonomy. Name should only contain lowercase letters and the
underscore character, and not be more than 32 characters long (database structure restriction).
Default: None
$object_type
(array/string) (required) Name of the object type for the taxonomy object. Object-types can be built-in Post
Type or any Custom Post Type that may be registered.
Default: None
Built-in Post Types:

 post
 page
 attachment
 revision
 nav_menu_item
 custom_css
 customize_changeset

Custom Post Types:
 {custom_post_type} - Custom Post Type names must be all in lower-case and without any spaces.
 null - Setting explicitly to null registers the taxonomy but doesn't associate it with any objects, so it

won't be directly available within the Admin UI. You will need to manually register it using the
'taxonomy' parameter (passed through $args) when registering a custom post_type (see
register_post_type()), or using register_taxonomy_for_object_type().

$args
(array/string) (optional) An array of Arguments.
Default: None

Widget Area

register_sidebar()
Description
Builds the definition for a single sidebar and returns the ID. Call on "widgets_init" action.
Usage
<?php register_sidebar($args); ?>
Default Usage
<?php $args = array(
 'name' => __('Sidebar name', 'theme_text_domain'),
 'id' => 'unique-sidebar-id',

http://core.trac.wordpress.org/browser/trunk/wp-includes/class-wp.php
https://codex.wordpress.org/Function_Reference/register_taxonomy#Reserved_Terms
http://core.trac.wordpress.org/ticket/15568
https://codex.wordpress.org/Function_Reference/register_taxonomy_for_object_type
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Array.2Fstring
https://codex.wordpress.org/Post_Type
https://codex.wordpress.org/Post_Type
https://codex.wordpress.org/Post_Type
https://codex.wordpress.org/Post_Types#Custom_Types
https://codex.wordpress.org/Function_Reference/register_post_type
https://codex.wordpress.org/Function_Reference/register_taxonomy_for_object_type
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Array.2Fstring
https://codex.wordpress.org/Function_Reference/register_taxonomy#Arguments
https://codex.wordpress.org/Sidebars

Prof. Harsh Joshi Page 106

 'description' => '',
 'class' => '',
 'before_widget' => '<li id="%1$s" class="widget %2$s">',
 'after_widget' => '',
 'before_title' => '<h2 class="widgettitle">',
 'after_title' => '</h2>'); ?>
Parameters
args
(string/array) (optional) Builds Sidebar based off of 'name' and 'id' values.
Default: None

 name - Sidebar name (default is localized 'Sidebar' and numeric ID).
 id - Sidebar id - Must be all in lowercase, with no spaces (default is a numeric auto-incremented ID).

If you do not set the id argument value, you will get E_USER_NOTICE messages in debug mode,
starting with version 4.2.

 description - Text description of what/where the sidebar is. Shown on widget management screen.
(Since 2.9) (default: empty)

 class - CSS class to assign to the Sidebar in the Appearance -> Widget admin page. This class will
only appear in the source of the WordPress Widget admin page. It will not be included in the
frontend of your website. Note: The value "sidebar" will be prepended to the class value. For
example, a class of "tal" will result in a class value of "sidebar-tal". (default: empty).

 before_widget - HTML to place before every widget(default: <li id="%1$s" class="widget %2$s">)
Note: uses sprintf for variable substitution

 after_widget - HTML to place after every widget (default: \n).
 before_title - HTML to place before every title (default: <h2 class="widgettitle">).
 after_title - HTML to place after every title (default: </h2>\n).

dynamic_sidebar()
Description
This function calls each of the active widget callbacks in order, which prints the markup for the sidebar. If
you have more than one sidebar, you should give this function the name or number of the sidebar you
want to print. This function returns true on success and false on failure.
The return value should be used to determine whether to display a static sidebar. This ensures that your
theme will look good even when the Widgets plug-in is not active.
If your sidebars were registered by number, they should be retrieved by number. If they had names when
you registered them, use their names to retrieve them.
Usage
 <?php dynamic_sidebar($index); ?>
Parameters
index
(integer/string) (optional) Name or ID of dynamic sidebar.
Default: 1
Return Value
(boolean)
True, if widget sidebar was found and called. False if not found or not called.
Examples
Here is the recommended use of this function:
<?php if (is_active_sidebar('left-sidebar')) : ?>
 <ul id="sidebar">
 <?php dynamic_sidebar('left-sidebar'); ?>

https://codex.wordpress.org/How_to_Pass_Tag_Parameters#String.2Farray
https://codex.wordpress.org/Debugging_in_WordPress
https://codex.wordpress.org/Sidebars
https://codex.wordpress.org/How_to_Pass_Tag_Parameters#Integer.2Fstring

Prof. Harsh Joshi Page 107

<?php endif; ?>
<ul id="sidebar">
 <?php dynamic_sidebar('right-sidebar'); ?>

<ul id="sidebar">
<?php if (! dynamic_sidebar()) : ?>
 {static sidebar item 1}
 {static sidebar item 2}
<?php endif; ?>

